The function F(x)= Using R: a) Using R, create a user-defined function for F (named F) in the interval [0,4]. b) Using this F, find the probability that X < 2.3 | c) Using F, find the probability that X > 3.7| d) Using F, find the probability that 2.3 < X < 3.7 32 (6-x).x² for 0 ≤x ≤4 and 0 for x<0 and 1 for x > 4 is the CDF of a random variable X. e) What is the probability density function(in R code) for X between 0 and 4 ?
The function F(x)= Using R: a) Using R, create a user-defined function for F (named F) in the interval [0,4]. b) Using this F, find the probability that X < 2.3 | c) Using F, find the probability that X > 3.7| d) Using F, find the probability that 2.3 < X < 3.7 32 (6-x).x² for 0 ≤x ≤4 and 0 for x<0 and 1 for x > 4 is the CDF of a random variable X. e) What is the probability density function(in R code) for X between 0 and 4 ?
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Please assist with all questions and add R script as well.
![**Understanding and Implementing Cumulative Distribution Function (CDF) in R**
The function \( F(x) = \frac{1}{32}(6 - x) \cdot x^2 \) for \( 0 \leq x \leq 4 \) and \( 0 \) for \( x < 0 \) and \( 1 \) for \( x > 4 \) is the cumulative distribution function (CDF) of a random variable \( X \).
**Using R:**
**a) Using R, create a user-defined function for \( F \) (named F) in the interval \([0, 4]\).**
```R
F <- function(x) {
if(x < 0) return(0)
if(x > 4) return(1)
return((1/32) * (6 - x) * x^2)
}
```
**b) Using this \( F \), find the probability that \( X < 2.3 \).**
```R
prob_X_less_than_2_3 <- F(2.3)
print(prob_X_less_than_2_3)
```
**c) Using \( F \), find the probability that \( X > 3.7 \).**
```R
prob_X_greater_than_3_7 <- 1 - F(3.7)
print(prob_X_greater_than_3_7)
```
**d) Using \( F \), find the probability that \( 2.3 < X < 3.7 \).**
```R
prob_X_between_2_3_and_3_7 <- F(3.7) - F(2.3)
print(prob_X_between_2_3_and_3_7)
```
**e) What is the probability density function (in R code) for \( X \) between 0 and 4?**
```R
f <- function(x) {
if(x < 0 || x > 4) return(0)
return((1/16) * x * (3 - x))
}
```
**f) Paste your R script in the following box**
```R
F <- function(x) {
if(x < 0) return(0)
if(x > 4) return(1)
return((1/32) * (6 - x) * x^](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa61d77b8-3322-4869-a508-5eb685631aec%2F41aaf77e-2b16-4e05-b0fd-ba47009154e0%2Fn43bh59_processed.png&w=3840&q=75)
Transcribed Image Text:**Understanding and Implementing Cumulative Distribution Function (CDF) in R**
The function \( F(x) = \frac{1}{32}(6 - x) \cdot x^2 \) for \( 0 \leq x \leq 4 \) and \( 0 \) for \( x < 0 \) and \( 1 \) for \( x > 4 \) is the cumulative distribution function (CDF) of a random variable \( X \).
**Using R:**
**a) Using R, create a user-defined function for \( F \) (named F) in the interval \([0, 4]\).**
```R
F <- function(x) {
if(x < 0) return(0)
if(x > 4) return(1)
return((1/32) * (6 - x) * x^2)
}
```
**b) Using this \( F \), find the probability that \( X < 2.3 \).**
```R
prob_X_less_than_2_3 <- F(2.3)
print(prob_X_less_than_2_3)
```
**c) Using \( F \), find the probability that \( X > 3.7 \).**
```R
prob_X_greater_than_3_7 <- 1 - F(3.7)
print(prob_X_greater_than_3_7)
```
**d) Using \( F \), find the probability that \( 2.3 < X < 3.7 \).**
```R
prob_X_between_2_3_and_3_7 <- F(3.7) - F(2.3)
print(prob_X_between_2_3_and_3_7)
```
**e) What is the probability density function (in R code) for \( X \) between 0 and 4?**
```R
f <- function(x) {
if(x < 0 || x > 4) return(0)
return((1/16) * x * (3 - x))
}
```
**f) Paste your R script in the following box**
```R
F <- function(x) {
if(x < 0) return(0)
if(x > 4) return(1)
return((1/32) * (6 - x) * x^
![### Probability Density Function and Computations
The probability density function of random variable \( X \) is given by:
\[ f(x) = \frac{3}{500}(10x - x^2) \quad \text{for} \quad 0 \leq x \leq 10 \quad \text{and} \quad 0 \quad \text{otherwise.} \]
Perform the following computations using the R `integrate` function:
#### a) Find the probability that \( X > 6 \)
\[ \boxed{ }
\]
#### b) Find the probability that \( 3 < X < 7 \)
\[ \boxed{ }
\]
#### c) Find the expected value of \( X \)
\[ \boxed{ }
\]
#### d) Find the variance of \( X \)
\[ \boxed{ }
\]
#### e) Find the standard deviation of \( X \)
\[ \boxed{ }
\]
#### f) Find the probability that \( X \) is within 0.50 standard deviations of its expected value
\[ \boxed{ }
\]
#### g) In the following paste your R script for this problem
```R
# Your R script here
```](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa61d77b8-3322-4869-a508-5eb685631aec%2F41aaf77e-2b16-4e05-b0fd-ba47009154e0%2F9s5at8s_processed.png&w=3840&q=75)
Transcribed Image Text:### Probability Density Function and Computations
The probability density function of random variable \( X \) is given by:
\[ f(x) = \frac{3}{500}(10x - x^2) \quad \text{for} \quad 0 \leq x \leq 10 \quad \text{and} \quad 0 \quad \text{otherwise.} \]
Perform the following computations using the R `integrate` function:
#### a) Find the probability that \( X > 6 \)
\[ \boxed{ }
\]
#### b) Find the probability that \( 3 < X < 7 \)
\[ \boxed{ }
\]
#### c) Find the expected value of \( X \)
\[ \boxed{ }
\]
#### d) Find the variance of \( X \)
\[ \boxed{ }
\]
#### e) Find the standard deviation of \( X \)
\[ \boxed{ }
\]
#### f) Find the probability that \( X \) is within 0.50 standard deviations of its expected value
\[ \boxed{ }
\]
#### g) In the following paste your R script for this problem
```R
# Your R script here
```
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
every single answer for this question along with the code was wrong.
Solution
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman