The Fourier integral of the function f(x) ={ x(x - 1) ,-n n) is given by f(x)~ " (A(a) cos(ax) + B(a)sin (ax)) da Then A(a) = O A. O B. 1-cos (an) πα3 OC. 1-cos (a) a3 O D. sin(na)-a? cos(na) πα3 OE. sin(a)-a? cos(a) a3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The Fourier integral of the function f(x) ={ x(x² – 1) ,- < x<
0, x <- and x > n)
%3D
is given by f(x)~ So"(A(@) cos(ax)+ B(a)sin (ax)) da
Then A(a) =
%3D
OA.
O B.
1-cos (an)
πα3
O .
1-cos (a)
a3
OD.
sin(na)-a? cos(na)
πα3
O E.
sin(a)-a? cos(a)
Transcribed Image Text:The Fourier integral of the function f(x) ={ x(x² – 1) ,- < x< 0, x <- and x > n) %3D is given by f(x)~ So"(A(@) cos(ax)+ B(a)sin (ax)) da Then A(a) = %3D OA. O B. 1-cos (an) πα3 O . 1-cos (a) a3 OD. sin(na)-a? cos(na) πα3 O E. sin(a)-a? cos(a)
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Definite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,