c) Consider the vector of predictors x = (1.06931, -0.9703, -1.06931, 1.12871, 1.0297). Using your shrunk estimator B(λ') (as column vector) compute the Τ xT B(X'). predicted value ŷ = x d) Repeat b) for the regularization parameter taking value " determine B(λ"). = 13, that is, The following table contains output from a lasso fit to a linear model with d = 5 variables and n = 100 observations. Starting from the left, the columns are λ, and B1, ..., B5, i.e. each row has λ and the transposed column vector ẞ(λ). 0.00000 0.05470 0.13093 -0.04217 0.09980 -0.01947 1.39802 0.03968 0.11610 -0.01917 0.08656 0.00000 3.00093 0.02288 0.09856 5.70455 0.00000 0.06926 9.18968 0.00000 0.02941 12.13018 0.00000 0.00000 0.00000 0.06971 0.00000 0.00000 0.04054 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
c) Consider the vector of predictors x = (1.06931, -0.9703, -1.06931, 1.12871, 1.0297). Using your shrunk estimator B(λ') (as column vector) compute the Τ xT B(X'). predicted value ŷ = x d) Repeat b) for the regularization parameter taking value " determine B(λ"). = 13, that is, The following table contains output from a lasso fit to a linear model with d = 5 variables and n = 100 observations. Starting from the left, the columns are λ, and B1, ..., B5, i.e. each row has λ and the transposed column vector ẞ(λ). 0.00000 0.05470 0.13093 -0.04217 0.09980 -0.01947 1.39802 0.03968 0.11610 -0.01917 0.08656 0.00000 3.00093 0.02288 0.09856 5.70455 0.00000 0.06926 9.18968 0.00000 0.02941 12.13018 0.00000 0.00000 0.00000 0.06971 0.00000 0.00000 0.04054 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:c) Consider the vector of predictors x = (1.06931, -0.9703, -1.06931, 1.12871,
1.0297). Using your shrunk estimator B(λ') (as column vector) compute the
Τ
xT B(X').
predicted value ŷ = x
d) Repeat b) for the regularization parameter taking value "
determine B(λ").
= 13, that is,

Transcribed Image Text:The following table contains output from a lasso fit to a linear model with d = 5
variables and n = 100 observations. Starting from the left, the columns are λ,
and B1, ..., B5, i.e. each row has λ and the transposed column vector ẞ(λ).
0.00000
0.05470
0.13093
-0.04217 0.09980 -0.01947
1.39802 0.03968 0.11610 -0.01917 0.08656
0.00000
3.00093 0.02288 0.09856
5.70455 0.00000 0.06926
9.18968 0.00000 0.02941
12.13018 0.00000 0.00000
0.00000 0.06971
0.00000
0.00000 0.04054
0.00000
0.00000 0.00000
0.00000 0.00000 0.00000
0.00000
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

