The figure here shows a plot of potential energy U versus position x of a 0.898 kg particle that can travel only along an x axis. (Nonconservative forces are not involved.) Three values are UA = 15.0 J, Ug = 35.0 J and Uc = 45.0 J. The particle is released at x = 4.50 m with an initial speed of 7.91 m/s, headed in the negative x direction. (a) If the particle can reach x = 1.00 m, what is its speed there, and if it cannot, what is its turning point? What are the (b) magnitude and (c) direction of the force on the particle as it begins to move to the left of x = 4.00 m? Suppose, instead, the particle is headed in the positive x direction when it is released at x = 4.50 m at speed 7.91 m/s. (d) If the particle can reach x = 7.00 m, what is its speed there, and if it cannot, what is its turning point? What are the (e) magnitude and (f) direction of the force on the particle as it begins to move to the right of x = 5.00 m? U (J) Ucl UB UA 2 (a) Number (b) Number 1 4 x (m) 4.24 10 1 1 1. 6 Unit Unit m/s N
The figure here shows a plot of potential energy U versus position x of a 0.898 kg particle that can travel only along an x axis. (Nonconservative forces are not involved.) Three values are UA = 15.0 J, Ug = 35.0 J and Uc = 45.0 J. The particle is released at x = 4.50 m with an initial speed of 7.91 m/s, headed in the negative x direction. (a) If the particle can reach x = 1.00 m, what is its speed there, and if it cannot, what is its turning point? What are the (b) magnitude and (c) direction of the force on the particle as it begins to move to the left of x = 4.00 m? Suppose, instead, the particle is headed in the positive x direction when it is released at x = 4.50 m at speed 7.91 m/s. (d) If the particle can reach x = 7.00 m, what is its speed there, and if it cannot, what is its turning point? What are the (e) magnitude and (f) direction of the force on the particle as it begins to move to the right of x = 5.00 m? U (J) Ucl UB UA 2 (a) Number (b) Number 1 4 x (m) 4.24 10 1 1 1. 6 Unit Unit m/s N
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images