The figure below provides steady-state operating data for a cogeneration cycle that generates electricity and provides heat for campus buildings. Steam at 1.5 MPa, 280°C, enters a two-stage turbine with a mass flow rate of m1 = 2 kg/s. A fraction of the total flow, y = 0.15, is extracted between the two stages at 0.2 MPa to provide for building heating, and the remainder expands through the second stage to the condenser pressure of 0.1 bar. Condensate returns from the campus buildings at 0.1 MPa, 60°C and passes through a trap into the condenser, where it is reunited with the main feedwater flow. Saturated liquid leaves the condenser at 0.1 ba
On my online homework, it says the answer for part b, 993.2 kW and part c, 360.06 are incorrect. I also need help with part d.
The figure below provides steady-state operating data for a cogeneration cycle that generates electricity and provides heat for campus buildings. Steam at 1.5 MPa, 280°C, enters a two-stage turbine with a mass flow rate of m1 = 2 kg/s. A fraction of the total flow, y = 0.15, is extracted between the two stages at 0.2 MPa to provide for building heating, and the remainder expands through the second stage to the condenser pressure of 0.1 bar. Condensate returns from the campus buildings at 0.1 MPa, 60°C and passes through a trap into the condenser, where it is reunited with the main feedwater flow. Saturated liquid leaves the condenser at 0.1 bar.
![Pi = 1.5 MPa
T = 280°C
Turbine
Boiler
Ja-»
P2 = 0.2 MPa
1 – y)
P3 =0.1 bar
(1)
Trap
7
Condenser
P6 = 0.1 MPa
T= 60°C
Pump
5
P4 =P3 = 0.1 bar
X4 =0 (saturated liquid)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2b62c17d-5c05-48d6-ac2b-a3a7c31907f7%2Ff7665825-91a4-44b5-83c4-b01f5c7a9aca%2F09yxnf_processed.jpeg&w=3840&q=75)
![State
T (°C) h (kJ/kg)
1
1.5 MPa
280
2992
0.2 MPa
sat
2652
3
0.1 bar
sat
2280
4
0.1 bar
sat
191.8
1.5 MPa
193.3
0.1 MPa
60
251.6
7
0.1 bar
251.6
Determine:
(a) the rate of heat transfer to the working fluid passing through the boiler, in kW.
(b) the net power developed, in kW.
(c) the magnitude of the rate of heat transfer for building heating, in kW.
(d) the magnitude of the rate of heat transfer to the cooling water passing through the condenser, in kW.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2b62c17d-5c05-48d6-ac2b-a3a7c31907f7%2Ff7665825-91a4-44b5-83c4-b01f5c7a9aca%2Fp0v0lfg_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)