The figure below shows a vapor power cycle that provides process heat and produces power. The steam generator produces vapor at 500 lbf/in.², 800°F, at a rate of 8 x 105 lb/h. Eighty-eight percent of the steam expands through the turbine to 10 lbf/in.² and the remainder is directed to the heat exchanger. Saturated liquid exits the heat exchanger at 500 lbf/in.² and passes through a trap before entering the condenser at 10 lbf/in.² Saturated liquid exits the condenser at 10 lbf/in.² and is pumped to 500 lbf/in.² before entering the steam generator. The turbine and pump have isentropic efficiencies of 85% and 89%, respectively. For the process heat exchanger, assume the temperature at which heat transfer occurs is 465°F. Let To = 60°F, po = 14.7 lbf/in.² Steam generator 7p=89% Pi=500 lb/in.² T₁=800°F Heat exchanger i Pump (y) minn (1-y) 7=85% Oprocess P=500 lb/in saturated liquid Py=10 lb/in. ² saturated liquid Turbine W₂ P=10 lbf/in.² Condenser Determine: (a) the magnitude of the process heat production rate, in Btu/h. (b) the magnitude of the rate of exergy output, in Btu/h, as net work. (c) the rate of exergy transfer, in Btu/h, to the working fluid passing through the steam generator. (d) the magnitude of the rate of exergy output, in Btu/h, with the process heat. (e) the magnitude of the rate of exergy loss, in Btu/h, from the working fluid passing through the condenser. (f) the sum of the rate of exergy destrution, in Btu/h, in the turbine, process heat exchager, trap, and pump.
The figure below shows a vapor power cycle that provides process heat and produces power. The steam generator produces vapor at 500 lbf/in.², 800°F, at a rate of 8 x 105 lb/h. Eighty-eight percent of the steam expands through the turbine to 10 lbf/in.² and the remainder is directed to the heat exchanger. Saturated liquid exits the heat exchanger at 500 lbf/in.² and passes through a trap before entering the condenser at 10 lbf/in.² Saturated liquid exits the condenser at 10 lbf/in.² and is pumped to 500 lbf/in.² before entering the steam generator. The turbine and pump have isentropic efficiencies of 85% and 89%, respectively. For the process heat exchanger, assume the temperature at which heat transfer occurs is 465°F. Let To = 60°F, po = 14.7 lbf/in.² Steam generator 7p=89% Pi=500 lb/in.² T₁=800°F Heat exchanger i Pump (y) minn (1-y) 7=85% Oprocess P=500 lb/in saturated liquid Py=10 lb/in. ² saturated liquid Turbine W₂ P=10 lbf/in.² Condenser Determine: (a) the magnitude of the process heat production rate, in Btu/h. (b) the magnitude of the rate of exergy output, in Btu/h, as net work. (c) the rate of exergy transfer, in Btu/h, to the working fluid passing through the steam generator. (d) the magnitude of the rate of exergy output, in Btu/h, with the process heat. (e) the magnitude of the rate of exergy loss, in Btu/h, from the working fluid passing through the condenser. (f) the sum of the rate of exergy destrution, in Btu/h, in the turbine, process heat exchager, trap, and pump.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 11 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY