The equilibrium constant, K,, for the following reaction is 0.160 at 298 K. 2NOBr(g) 2NO(g) + Br2(g) If AH° for this reaction is 16.1 kJ, what is the value of K, at 420 K? Kp =

Introduction to General, Organic and Biochemistry
11th Edition
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Chapter7: Reaction Rates And Chemical Equilibrium
Section: Chapter Questions
Problem 7.81P
icon
Related questions
Question
### Chemical Equilibrium and Temperature Dependence

This section of the educational material discusses the equilibrium constant and its temperature dependence for the following chemical reaction:

\[ \text{2NOBr(g)} \rightleftharpoons \text{2NO(g) + Br}_2\text{(g)} \]

#### Given Data:

- The equilibrium constant (\( K_p \)) at 298 K is 0.160.
- The enthalpy change (\( \Delta H^\circ \)) for this reaction is 16.1 kJ.
- We are required to find the equilibrium constant (\( K_p \)) at 420 K.

#### Detailed Explanation:

To determine the value of \( K_p \) at 420 K, the Van't Hoff equation can be used:

\[ \ln \left( \dfrac{K_2}{K_1} \right) = -\dfrac{\Delta H^\circ}{R} \left( \dfrac{1}{T_2} - \dfrac{1}{T_1} \right) \]

Where:
- \( K_1 \) and \( K_2 \) are the equilibrium constants at temperatures \( T_1 \) and \( T_2 \), respectively.
- \( R \) is the universal gas constant (8.314 J/(mol·K)).
- \( \Delta H^\circ \) is the enthalpy change.

Rearranging the equation to isolate \( K_2 \):

\[ K_2 = K_1 \exp \left( -\dfrac{\Delta H^\circ}{R} \left( \dfrac{1}{T_2} - \dfrac{1}{T_1} \right) \right) \]

Using the provided data:
- \( K_1 = 0.160 \)
- \( T_1 = 298 \) K
- \( T_2 = 420 \) K
- \( \Delta H^\circ = 16.1 \times 10^3 \) J

First, calculate the term \( \dfrac{1}{T_2} - \dfrac{1}{T_1} \):

\[ \dfrac{1}{420} - \dfrac{1}{298} = -0.002679 \text{ K}^{-1} \]

Then, calculate \( \dfrac
Transcribed Image Text:### Chemical Equilibrium and Temperature Dependence This section of the educational material discusses the equilibrium constant and its temperature dependence for the following chemical reaction: \[ \text{2NOBr(g)} \rightleftharpoons \text{2NO(g) + Br}_2\text{(g)} \] #### Given Data: - The equilibrium constant (\( K_p \)) at 298 K is 0.160. - The enthalpy change (\( \Delta H^\circ \)) for this reaction is 16.1 kJ. - We are required to find the equilibrium constant (\( K_p \)) at 420 K. #### Detailed Explanation: To determine the value of \( K_p \) at 420 K, the Van't Hoff equation can be used: \[ \ln \left( \dfrac{K_2}{K_1} \right) = -\dfrac{\Delta H^\circ}{R} \left( \dfrac{1}{T_2} - \dfrac{1}{T_1} \right) \] Where: - \( K_1 \) and \( K_2 \) are the equilibrium constants at temperatures \( T_1 \) and \( T_2 \), respectively. - \( R \) is the universal gas constant (8.314 J/(mol·K)). - \( \Delta H^\circ \) is the enthalpy change. Rearranging the equation to isolate \( K_2 \): \[ K_2 = K_1 \exp \left( -\dfrac{\Delta H^\circ}{R} \left( \dfrac{1}{T_2} - \dfrac{1}{T_1} \right) \right) \] Using the provided data: - \( K_1 = 0.160 \) - \( T_1 = 298 \) K - \( T_2 = 420 \) K - \( \Delta H^\circ = 16.1 \times 10^3 \) J First, calculate the term \( \dfrac{1}{T_2} - \dfrac{1}{T_1} \): \[ \dfrac{1}{420} - \dfrac{1}{298} = -0.002679 \text{ K}^{-1} \] Then, calculate \( \dfrac
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 3 images

Blurred answer
Knowledge Booster
Thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introduction to General, Organic and Biochemistry
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:
9781285869759
Author:
Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning