The cross-section shown is used to support the loads on the beam below. The moment of inertia of the section is |= 1384 in4 and distance of the centroid of the section from the bottom is y = 5.8 in. [MA=4800 lb-ft, w=600 lb/ft, P=1400 lb, a=5ft,b=7ft,c= 2 ft,d=5ft] Ma b ཅ་ d 15 in 1.5 in 1.5 in. 2 in. k11 in. Cross section of the beam a) Construct the complete shear-force and bending-moment diagrams for the beam and determine the maximum positive bending moment in the beam. b) determine the maximum negative bending moment in the beam. c) Determine the maximum tension bending stress at any location along the beam. d) Determine the maximum compression bending stress at any location along the beam.

Materials Science And Engineering Properties
1st Edition
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Charles Gilmore
Chapter8: Engineering Materials
Section: Chapter Questions
Problem 85CQ
icon
Related questions
Question
The cross-section shown is used to support the loads on
the beam below. The moment of inertia of the section is |=
1384 in4 and distance of the centroid of the section from
the bottom is y = 5.8 in.
[MA=4800 lb-ft, w=600 lb/ft, P=1400 lb, a=5ft,b=7ft,c=
2 ft,d=5ft]
Ma
b
ཅ་
d
15 in
1.5 in
1.5 in.
2 in.
k11 in.
Cross section of the beam
a) Construct the complete shear-force and
bending-moment diagrams for the beam and
determine the maximum positive bending
moment in the beam.
b) determine the maximum negative bending
moment in the beam.
c) Determine the maximum tension bending
stress at any location along the beam.
d) Determine the maximum compression
bending stress at any location along the beam.
Transcribed Image Text:The cross-section shown is used to support the loads on the beam below. The moment of inertia of the section is |= 1384 in4 and distance of the centroid of the section from the bottom is y = 5.8 in. [MA=4800 lb-ft, w=600 lb/ft, P=1400 lb, a=5ft,b=7ft,c= 2 ft,d=5ft] Ma b ཅ་ d 15 in 1.5 in 1.5 in. 2 in. k11 in. Cross section of the beam a) Construct the complete shear-force and bending-moment diagrams for the beam and determine the maximum positive bending moment in the beam. b) determine the maximum negative bending moment in the beam. c) Determine the maximum tension bending stress at any location along the beam. d) Determine the maximum compression bending stress at any location along the beam.
Expert Solution
steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Similar questions
Recommended textbooks for you
Materials Science And Engineering Properties
Materials Science And Engineering Properties
Civil Engineering
ISBN:
9781111988609
Author:
Charles Gilmore
Publisher:
Cengage Learning
Steel Design (Activate Learning with these NEW ti…
Steel Design (Activate Learning with these NEW ti…
Civil Engineering
ISBN:
9781337094740
Author:
Segui, William T.
Publisher:
Cengage Learning
Engineering Fundamentals: An Introduction to Engi…
Engineering Fundamentals: An Introduction to Engi…
Civil Engineering
ISBN:
9781305084766
Author:
Saeed Moaveni
Publisher:
Cengage Learning
Architectural Drafting and Design (MindTap Course…
Architectural Drafting and Design (MindTap Course…
Civil Engineering
ISBN:
9781285165738
Author:
Alan Jefferis, David A. Madsen, David P. Madsen
Publisher:
Cengage Learning
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781305081550
Author:
Braja M. Das
Publisher:
Cengage Learning
Residential Construction Academy: House Wiring (M…
Residential Construction Academy: House Wiring (M…
Civil Engineering
ISBN:
9781337402415
Author:
Gregory W Fletcher
Publisher:
Cengage Learning