The Cavendish balance shown in the figure below has two large lead balls, each of mass M = 1.5 kg,and two smaller lead balls, each of mass m = 0.8 kg. The lengths of the suspended rod to which the twosmaller balls are attached and the fixed rod to which the larger balls are attached are both 40 cm asmeasured from the center of each lead ball. If the angle between the centers of the large and smallballs is = 22 degrees with respect to the rotational axis established by the quartz fiber, find the force ofgravitational attraction between each pair of large and small balls.
Angular Momentum
The momentum of an object is given by multiplying its mass and velocity. Momentum is a property of any object that moves with mass. The only difference between angular momentum and linear momentum is that angular momentum deals with moving or spinning objects. A moving particle's linear momentum can be thought of as a measure of its linear motion. The force is proportional to the rate of change of linear momentum. Angular momentum is always directly proportional to mass. In rotational motion, the concept of angular momentum is often used. Since it is a conserved quantity—the total angular momentum of a closed system remains constant—it is a significant quantity in physics. To understand the concept of angular momentum first we need to understand a rigid body and its movement, a position vector that is used to specify the position of particles in space. A rigid body possesses motion it may be linear or rotational. Rotational motion plays important role in angular momentum.
Moment of a Force
The idea of moments is an important concept in physics. It arises from the fact that distance often plays an important part in the interaction of, or in determining the impact of forces on bodies. Moments are often described by their order [first, second, or higher order] based on the power to which the distance has to be raised to understand the phenomenon. Of particular note are the second-order moment of mass (Moment of Inertia) and moments of force.
The Cavendish balance shown in the figure below has two large lead balls, each of mass M = 1.5 kg,
and two smaller lead balls, each of mass m = 0.8 kg. The lengths of the suspended rod to which the two
smaller balls are attached and the fixed rod to which the larger balls are attached are both 40 cm as
measured from the center of each lead ball. If the angle between the centers of the large and small
balls is = 22 degrees with respect to the rotational axis established by the quartz fiber, find the force of
gravitational attraction between each pair of large and small balls.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images