A star originates as a large body of slowly rotating gas. Because of gravitational attraction, this large body of gas slowly decreases in size. You can assume that no external forces are acting. Which one of the following statements correctly describes what happens as the radius of the body of gas decreases? Both the moment of inertia and the angular velocity increase. Both the angular momentum and the angular velocity increase. The angular momentum increases and the angular velocity decreases. Both the angular momentum and the angular velocity decrease. The angular momentum remains constant and the angular velocity increases.
A star originates as a large body of slowly rotating gas. Because of gravitational attraction, this large body of gas slowly decreases in size. You can assume that no external forces are acting. Which one of the following statements correctly describes what happens as the radius of the body of gas decreases? Both the moment of inertia and the angular velocity increase. Both the angular momentum and the angular velocity increase. The angular momentum increases and the angular velocity decreases. Both the angular momentum and the angular velocity decrease. The angular momentum remains constant and the angular velocity increases.
A star originates as a large body of slowly rotating gas. Because of gravitational attraction, this large body of gas slowly decreases in size. You can assume that no external forces are acting. Which one of the following statements correctly describes what happens as the radius of the body of gas decreases? Both the moment of inertia and the angular velocity increase. Both the angular momentum and the angular velocity increase. The angular momentum increases and the angular velocity decreases. Both the angular momentum and the angular velocity decrease. The angular momentum remains constant and the angular velocity increases.
A star originates as a large body of slowly rotating gas. Because of gravitational attraction, this large body of gas slowly decreases in size. You can assume that no external forces are acting.
Which one of the following statements correctly describes what happens as the radius of the body of gas decreases?
Both the moment of inertia and the angular velocity increase.
Both the angular momentum and the angular velocity increase.
The angular momentum increases and the angular velocity decreases.
Both the angular momentum and the angular velocity decrease.
The angular momentum remains constant and the angular velocity increases.
Definition Definition Product of the moment of inertia and angular velocity of the rotating body: (L) = Iω Angular momentum is a vector quantity, and it has both magnitude and direction. The magnitude of angular momentum is represented by the length of the vector, and the direction is the same as the direction of angular velocity.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.