The arms of a Porter governor are equal in length and pivot on the axis of rotation. The mass of each ball is 10 kg and the mass of the central load is 25 kg. The ball rotates at radius 210 mm when the governor is at its lowest setting and 260 mm when it is at its maximum setting. At maximum speed, the vertical distance from the center of the sleeve to the pivot was 500 mm. For another case, it can be seen that the height of the governor will reduce to half values when the ball masses are replaced by three-time larger from the first case. The friction force for both cases is 10 N. Find arms length L Determine the range of speed in first case what will be the final range of speed As a result of extracting the speed range values in both cases, what did you conclude?
The arms of a Porter governor are equal in length and pivot on the axis of rotation. The mass of each ball is 10 kg and the mass of the central load is 25 kg. The ball rotates at radius 210 mm when the governor is at its lowest setting and 260 mm when it is at its maximum setting. At maximum speed, the vertical distance from the center of the sleeve to the pivot was 500 mm. For another case, it can be seen that the height of the governor will reduce to half values when the ball masses are replaced by three-time larger from the first case. The friction force for both cases is 10 N.
Find arms length L
Determine the range of speed in first case
what will be the final range of speed
As a result of extracting the speed range values in both cases, what did you conclude?
Step by step
Solved in 2 steps