Task 1 (d) The force, F, of a turbine generator is a function of density p, area A and velocity v. By assuming F = apª A® v€ and dimensional homogeneity, find a, b and c and express F in terms of p, A and v. (a, a, b and c are real numbers). Make the following assumptions to determine the dimensionless parameter: F= 1kN if the scalar values of pAv= 1milli. (e) The dynamic coefficient of viscosity µ (viscosity of a fluid) is found from the formula: , μΑν F Fis the force exerted on the liquid, A is the cross sectional area of the path, v is the fluid velocity and l is the distance travelled by the fluid. Using dimensional analysis techniques, determine the

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Task 1
(d) The force, F, of a turbine generator is a function of density p, area A and velocity v. By
assuming
F = apª A® vc
and dimensional homogeneity, find a, b and c and express F in terms of p, A and v. (a, a, b and c
are real numbers). Make the following assumptions to determine the dimensionless parameter:
F = 1k N if the scalar values of pAv= 1milli.
(e) The dynamic coefficient of viscosity µ (viscosity of a fluid) is found from the formula:
µAv
F =
Fis the force exerted on the liquid, A is the cross sectional area of the path, v is the fluid velocity
and l is the distance travelled by the fluid. Using dimensional analysis techniques, determine the
equation that governs µ and its dimensions using the results of (b) and the equation in c, clearly
showing all steps in the dimensional analysis.
Transcribed Image Text:Task 1 (d) The force, F, of a turbine generator is a function of density p, area A and velocity v. By assuming F = apª A® vc and dimensional homogeneity, find a, b and c and express F in terms of p, A and v. (a, a, b and c are real numbers). Make the following assumptions to determine the dimensionless parameter: F = 1k N if the scalar values of pAv= 1milli. (e) The dynamic coefficient of viscosity µ (viscosity of a fluid) is found from the formula: µAv F = Fis the force exerted on the liquid, A is the cross sectional area of the path, v is the fluid velocity and l is the distance travelled by the fluid. Using dimensional analysis techniques, determine the equation that governs µ and its dimensions using the results of (b) and the equation in c, clearly showing all steps in the dimensional analysis.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY