(Suppose you need to design a tension test machine capable of testing specimens that have nominal ultimate stresses as high as σu = 100 ksi . How much force must the machine be capable of generating? Assume the testing specimen has the ASTM shape shown. Answer for this is 19.6 kip) (If the maximum nominal strain is ϵf = 0.7 just before the test specimen fractures and the test machine operates by moving only one grip, how far must that grip be designed to travel? The total length of the deforming part of the specimen is 3 in. Answer for this is 2.10 in) Do not know if this info is needed but this was the other 2 parts
(Suppose you need to design a tension test machine capable of testing specimens that have nominal ultimate stresses as high as σu = 100 ksi . How much force must the machine be capable of generating? Assume the testing specimen has the ASTM shape shown. Answer for this is 19.6 kip)
(If the maximum nominal strain is ϵf = 0.7 just before the test specimen fractures and the test machine operates by moving only one grip, how far must that grip be designed to travel? The total length of the deforming part of the specimen is 3 in. Answer for this is 2.10 in)
Do not know if this info is needed but this was the other 2 parts
Given data:
Ultimate stress, σu = 100 ksi
diameter of the specimen, d = 0.5 in (from the given image)
Solution:
The stress is given by,
The force must the machine be capable of generating can be calculated as 19.635 kip.
Step by step
Solved in 3 steps with 2 images