Suppose you measure the angular momentum in the z-direction L, for an l= 2 hydrogen atom in the state |ý > = Lz are – 2h, -ħ, 0, ħ, 2ħfor the eigenvectors|– 2 >, |-1>, |0 >, |1>, |2 >, respectively. What is AL,? Vol - 2 > -V 1 10 > +iv |2 >. The eigenvalues of

icon
Related questions
Question
Suppose you measure the angular momentum in the z-direction \( L_z \) for an \( l = 2 \) hydrogen atom in the state 

\[
|\psi \rangle = \frac{1}{\sqrt{10}} | -2 \rangle - \sqrt{\frac{6}{10}} |0 \rangle + i \sqrt{\frac{3}{10}} |2 \rangle .
\]

The eigenvalues of \( L_z \) are \( -2\hbar, -\hbar, 0, \hbar, 2\hbar \) for the eigenvectors 

\[
| -2 \rangle, | -1 \rangle, | 0 \rangle, | 1 \rangle, | 2 \rangle,
\] 

respectively. What is \(\Delta L_z\)?

Choices:

- \( \frac{\sqrt{31}}{10} \hbar \)
- \( \frac{7}{19} \hbar \)
- \( \frac{6}{5} \hbar \)
- \( \frac{3}{25} \hbar \)
Transcribed Image Text:Suppose you measure the angular momentum in the z-direction \( L_z \) for an \( l = 2 \) hydrogen atom in the state \[ |\psi \rangle = \frac{1}{\sqrt{10}} | -2 \rangle - \sqrt{\frac{6}{10}} |0 \rangle + i \sqrt{\frac{3}{10}} |2 \rangle . \] The eigenvalues of \( L_z \) are \( -2\hbar, -\hbar, 0, \hbar, 2\hbar \) for the eigenvectors \[ | -2 \rangle, | -1 \rangle, | 0 \rangle, | 1 \rangle, | 2 \rangle, \] respectively. What is \(\Delta L_z\)? Choices: - \( \frac{\sqrt{31}}{10} \hbar \) - \( \frac{7}{19} \hbar \) - \( \frac{6}{5} \hbar \) - \( \frac{3}{25} \hbar \)
Expert Solution
steps

Step by step

Solved in 3 steps with 9 images

Blurred answer