4. If an atom is not in a magnetic field or other probe of its angular momentum direction, then it is equally likely to be found in any allowed state of L̟. For the p state, this means that it can be represented by a superposition of states 1 Y (8.6) = Y1. Y1,-1 + Y10 + V3 %3D Y11 (a) Show that in this case, the overall probability density |Y (0,0)|² = Y* (0,6) Y (8, ø) is independent of both 0 and ø.? (b) Show explicitly that it is properly normalized.
4. If an atom is not in a magnetic field or other probe of its angular momentum direction, then it is equally likely to be found in any allowed state of L̟. For the p state, this means that it can be represented by a superposition of states 1 Y (8.6) = Y1. Y1,-1 + Y10 + V3 %3D Y11 (a) Show that in this case, the overall probability density |Y (0,0)|² = Y* (0,6) Y (8, ø) is independent of both 0 and ø.? (b) Show explicitly that it is properly normalized.
Related questions
Question
help w modern physics
![4. If an atom is not in a magnetic field or other probe of its angular momentum direction, then
it is equally likely to be found in any allowed state of L2. For the p state, this means that it
can be represented by a superposition of states
Y (0.6) = -1+Yia
(0, ø)
V3
Y1,0 +
V3
(a) Show that in this case, the overall probability density
|Y (0, 4)|² = Y* (0, ¢) Y (0, ø)
is independent of both 0 and ø.2
(b) Show explicitly that it is properly normalized.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F831851de-f673-41f5-9f36-80ab878b6fd6%2Fa8b979c3-2e17-4d39-b61a-7c714e97d8a7%2F7fh1c6ak_processed.png&w=3840&q=75)
Transcribed Image Text:4. If an atom is not in a magnetic field or other probe of its angular momentum direction, then
it is equally likely to be found in any allowed state of L2. For the p state, this means that it
can be represented by a superposition of states
Y (0.6) = -1+Yia
(0, ø)
V3
Y1,0 +
V3
(a) Show that in this case, the overall probability density
|Y (0, 4)|² = Y* (0, ¢) Y (0, ø)
is independent of both 0 and ø.2
(b) Show explicitly that it is properly normalized.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)