Sulfur trioxide decomposes at high temperature in a sealed container: 2 SO3(g) 2 SO2(g) + O2(g) Initially, the vessel is charged at 1000 K with SO3(g) at a partial pressure of 0.500 atm. At equilibrium the SO3 partial pressure is 0.200 atm. Calculate K, at 1000 K. SO3 (atm) 0.500 SO₂ (atm) 0.00 02 (atm) Initial Change Equilibrium - 2x 0.200 + 2x 2x 0.00 + X X Initial Since we're given the equilibrium partial pressure of SO3, WE THUS KNOW: 0.500 - 2x = 0.200. Therefore, x = 0.150 Fill in the table accordingly! SO3 (atm) 0.500 Change - 0.300 SO2 (atm) 0.00 + 0.300 O2 (atm) 0.00 + 0.150 Equilibrium 0.200 0.300 0.150 Thus: Kp = Ps02 P02 PS03 2 K = (0.300)2(0.150) (0.200) 2 = 0.338
Sulfur trioxide decomposes at high temperature in a sealed container: 2 SO3(g) 2 SO2(g) + O2(g) Initially, the vessel is charged at 1000 K with SO3(g) at a partial pressure of 0.500 atm. At equilibrium the SO3 partial pressure is 0.200 atm. Calculate K, at 1000 K. SO3 (atm) 0.500 SO₂ (atm) 0.00 02 (atm) Initial Change Equilibrium - 2x 0.200 + 2x 2x 0.00 + X X Initial Since we're given the equilibrium partial pressure of SO3, WE THUS KNOW: 0.500 - 2x = 0.200. Therefore, x = 0.150 Fill in the table accordingly! SO3 (atm) 0.500 Change - 0.300 SO2 (atm) 0.00 + 0.300 O2 (atm) 0.00 + 0.150 Equilibrium 0.200 0.300 0.150 Thus: Kp = Ps02 P02 PS03 2 K = (0.300)2(0.150) (0.200) 2 = 0.338
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
Can you explain how they get x=150 and the rest of the problem? Please
![Sulfur trioxide decomposes at high temperature in a sealed container:
2 SO3(g) 2 SO2(g) + O2(g)
Initially, the vessel is charged at 1000 K with SO3(g) at a partial pressure of 0.500 atm.
At equilibrium the SO3 partial pressure is 0.200 atm. Calculate K, at 1000 K.
SO3 (atm)
0.500
SO₂ (atm)
0.00
02 (atm)
Initial
Change
Equilibrium
- 2x
0.200
+ 2x
2x
0.00
+ X
X
Initial
Since we're given the equilibrium partial pressure of SO3, WE THUS KNOW:
0.500 - 2x = 0.200. Therefore, x = 0.150 Fill in the table accordingly!
SO3 (atm)
0.500
Change
- 0.300
SO2 (atm)
0.00
+ 0.300
O2 (atm)
0.00
+ 0.150
Equilibrium
0.200
0.300
0.150
Thus: Kp
=
Ps02 P02
PS03
2
K = (0.300)2(0.150)
(0.200) 2
= 0.338](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F637a8243-98d2-45ca-8dd1-4e9d7d0f97ca%2F89fa9ba1-f49e-4d8d-8a6e-3c4af523641f%2Fdgh6rc.jpeg&w=3840&q=75)
Transcribed Image Text:Sulfur trioxide decomposes at high temperature in a sealed container:
2 SO3(g) 2 SO2(g) + O2(g)
Initially, the vessel is charged at 1000 K with SO3(g) at a partial pressure of 0.500 atm.
At equilibrium the SO3 partial pressure is 0.200 atm. Calculate K, at 1000 K.
SO3 (atm)
0.500
SO₂ (atm)
0.00
02 (atm)
Initial
Change
Equilibrium
- 2x
0.200
+ 2x
2x
0.00
+ X
X
Initial
Since we're given the equilibrium partial pressure of SO3, WE THUS KNOW:
0.500 - 2x = 0.200. Therefore, x = 0.150 Fill in the table accordingly!
SO3 (atm)
0.500
Change
- 0.300
SO2 (atm)
0.00
+ 0.300
O2 (atm)
0.00
+ 0.150
Equilibrium
0.200
0.300
0.150
Thus: Kp
=
Ps02 P02
PS03
2
K = (0.300)2(0.150)
(0.200) 2
= 0.338
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY