Stiven AL in diameter Red 180 in long elongates 0.12 in under load of 60 kip. The diamurer of Rod decrease 0.004 in during loading : => Find modulus of modus of Rigidity ? Elasticity?, ¿um T (ksi) Poisson's ratio, and
Design Against Fluctuating Loads
Machine elements are subjected to varieties of loads, some components are subjected to static loads, while some machine components are subjected to fluctuating loads, whose load magnitude tends to fluctuate. The components of a machine, when rotating at a high speed, are subjected to a high degree of load, which fluctuates from a high value to a low value. For the machine elements under the action of static loads, static failure theories are applied to know the safe and hazardous working conditions and regions. However, most of the machine elements are subjected to variable or fluctuating stresses, due to the nature of load that fluctuates from high magnitude to low magnitude. Also, the nature of the loads is repetitive. For instance, shafts, bearings, cams and followers, and so on.
Design Against Fluctuating Load
Stress is defined as force per unit area. When there is localization of huge stresses in mechanical components, due to irregularities present in components and sudden changes in cross-section is known as stress concentration. For example, groves, keyways, screw threads, oil holes, splines etc. are irregularities.
![### Problem Statement:
**Given:**
A 2-inch diameter rod, 10 inches long, elongates 0.1 inches under a load of 60 kip. The diameter of the rod decreases by 0.004 inches during loading.
**Tasks:**
- Determine the modulus of elasticity \(E\).
- Find Poisson's ratio \(\nu\).
- Calculate the modulus of rigidity \(G\).
**Units:** The results should be provided in ksi and ksi [unit].
*Note:* There is blacked-out text which doesn't contribute to the problem statement. No diagrams are present in the text.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4c49c29d-b734-4891-8a07-7c122a77a78d%2Fc12d1629-4310-4315-a011-bd24ecae1250%2F0s1k6p9_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)