Solve the following system of equations by using the inverse of the coefficient matrix. The inverse of the coefficient matrix is shown. x - 2y + 3z 0 y- z+ W = -8 - 2x + 2y - 2z+ 4w = 10 2y3z + W = -1 Using the variables and values in the system of equations, what is the matrix equation solved for the matrix of the variables? O A. O B. U -|N -IN NI → N|→ -1 4 1 1 1 2 NIG 5 دام 2 2 دان 1 1 4 2 - IN 2 -2 NI N/W C Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. O A. The solution of the system is (...). (Simplify your answers.) OB. There are infinitely many solutions. The solutions are x = (Use integers or fractions for any numbers in the expression.) y= U and z= where w is any real number. 1 1 1 2 4 -|2 -1 4 - IN 5|2 -N -IN داد -14 ヤーレ N|→ N 1 1 1 N/W NI→ f NI→ -1 4 1 NÍ → 2 1 FIN -14 -|N -IN 2 - 10 12 IN -14 1 ➤|→ N NIW BIN -IN 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Solving a System of Equations Using the Inverse of a Coefficient Matrix**

To solve the following system of equations using the inverse of the coefficient matrix, we have the inverse of the coefficient matrix provided:

\[
x - 2y + 3z = 0
\]
\[
y - z + w = -8
\]
\[
-2x + 2y - 2z + 4w = 10
\]
\[
2y - 3z + w = -1
\]

The inverse of the coefficient matrix \(A^{-1}\) is given as:

\[
A^{-1} = 
\begin{bmatrix}
\frac{1}{2} & 1 & \frac{1}{2} & 1 \\
\frac{1}{2} & 4 & -\frac{1}{2} & -2 \\
-\frac{1}{2} & 5 & \frac{1}{4} & -\frac{3}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{4} & \frac{1}{2}
\end{bmatrix}
\]

**Matrix Equation for the System of Equations**

Using the variables and values in the system of equations, identify the matrix equation for the variables. The task is to select the correct representation of the system:

- Option A:
  \[
  \begin{bmatrix}
  \frac{1}{2} & 1 & \frac{1}{2} & 1 \\
  \frac{1}{2} & 4 & -\frac{1}{2} & -2 \\
  -\frac{1}{2} & 5 & \frac{1}{4} & -\frac{3}{2} \\
  \frac{1}{2} & -\frac{1}{2} & \frac{1}{4} & \frac{1}{2}
  \end{bmatrix}
  \begin{bmatrix}
  x \\
  y \\
  z \\
  w
  \end{bmatrix}
  =
  \begin{bmatrix}
  0 \\
  -8 \\
  10 \\
  -1
  \end{bmatrix}
  \]
Transcribed Image Text:**Solving a System of Equations Using the Inverse of a Coefficient Matrix** To solve the following system of equations using the inverse of the coefficient matrix, we have the inverse of the coefficient matrix provided: \[ x - 2y + 3z = 0 \] \[ y - z + w = -8 \] \[ -2x + 2y - 2z + 4w = 10 \] \[ 2y - 3z + w = -1 \] The inverse of the coefficient matrix \(A^{-1}\) is given as: \[ A^{-1} = \begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2} & 1 \\ \frac{1}{2} & 4 & -\frac{1}{2} & -2 \\ -\frac{1}{2} & 5 & \frac{1}{4} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{4} & \frac{1}{2} \end{bmatrix} \] **Matrix Equation for the System of Equations** Using the variables and values in the system of equations, identify the matrix equation for the variables. The task is to select the correct representation of the system: - Option A: \[ \begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2} & 1 \\ \frac{1}{2} & 4 & -\frac{1}{2} & -2 \\ -\frac{1}{2} & 5 & \frac{1}{4} & -\frac{3}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{4} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ -8 \\ 10 \\ -1 \end{bmatrix} \]
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,