Write the given system of equations as a matrix equation and solve by using inverses. X₁ - 2x₂ K₁ -X₁ + x2 k₂ a. What are x₁ and x₂ when k₁= -4 and k₂ =2? x₁ = 0 x2 = 2 b. What are x, and x₂ when k₁ = 4 and k₂ = 9? x₁ = -22 x₂ = -13 c. What are x₁ and x₂ when k₁ = 5 and k₂ = 3? X₁ x2 = =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Solving Systems of Equations Using Matrix Inverses

In this exercise, we will solve a system of linear equations by expressing it as a matrix equation and using the matrix inverse.

Given the system of equations:
\[ x_1 - 2x_2 = k_1 \]
\[ -x_1 + x_2 = k_2 \]

We can express this system as a matrix equation \( A \mathbf{x} = \mathbf{k} \), where:
\[ A = \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} \]
\[ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \]
\[ \mathbf{k} = \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} \]

To solve for \( \mathbf{x} \), we use the inverse of matrix \( A \), if it exists:
\[ \mathbf{x} = A^{-1} \mathbf{k} \]

Let's solve for \( x_1 \) and \( x_2 \) for the given values of \( k_1 \) and \( k_2 \).

#### a. When \( k_1 = -4 \) and \( k_2 = 2 \):
\[ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A^{-1} \begin{pmatrix} -4 \\ 2 \end{pmatrix} \]
Calculated values:
\[ x_1 = 0 \]
\[ x_2 = 2 \]

#### b. When \( k_1 = 4 \) and \( k_2 = 9 \):
\[ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A^{-1} \begin{pmatrix} 4 \\ 9 \end{pmatrix} \]
Calculated values:
\[ x_1 = -22 \]
\[ x_2 = -13 \]

#### c. When \( k_1 = 5 \) and \( k_2 = 3 \):
\[ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A^{-1} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \]
Calculated values
Transcribed Image Text:### Solving Systems of Equations Using Matrix Inverses In this exercise, we will solve a system of linear equations by expressing it as a matrix equation and using the matrix inverse. Given the system of equations: \[ x_1 - 2x_2 = k_1 \] \[ -x_1 + x_2 = k_2 \] We can express this system as a matrix equation \( A \mathbf{x} = \mathbf{k} \), where: \[ A = \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} \] \[ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \] \[ \mathbf{k} = \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} \] To solve for \( \mathbf{x} \), we use the inverse of matrix \( A \), if it exists: \[ \mathbf{x} = A^{-1} \mathbf{k} \] Let's solve for \( x_1 \) and \( x_2 \) for the given values of \( k_1 \) and \( k_2 \). #### a. When \( k_1 = -4 \) and \( k_2 = 2 \): \[ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A^{-1} \begin{pmatrix} -4 \\ 2 \end{pmatrix} \] Calculated values: \[ x_1 = 0 \] \[ x_2 = 2 \] #### b. When \( k_1 = 4 \) and \( k_2 = 9 \): \[ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A^{-1} \begin{pmatrix} 4 \\ 9 \end{pmatrix} \] Calculated values: \[ x_1 = -22 \] \[ x_2 = -13 \] #### c. When \( k_1 = 5 \) and \( k_2 = 3 \): \[ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A^{-1} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \] Calculated values
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,