Write the given system of equations as a matrix equation and solve by using inverses. X₁ - 2x₂ = K₁ -X₁ + x2 = K₂ a. What are x₁ and x₂ when k₁ = -4 and k₂ = 2? x₁ = 0 *2=2 b. What are x, and x₂ when k, = 4 and k₂ = 9? x₁ = X2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Solving a System of Equations Using Matrix Inverses

Consider the following system of equations:

\[
\begin{align*}
x_1 - 2x_2 & = k_1 \\
-x_1 + x_2 & = k_2
\end{align*}
\]

We aim to write this system as a matrix equation and solve it using matrix inverses.

### Matrix Formulation

The system can be represented in matrix form as:

\[
\begin{bmatrix}
1 & -2 \\
-1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
k_1 \\
k_2
\end{bmatrix}
\]

### Solving the System

To find \( x_1 \) and \( x_2 \), we can use the inverse of the coefficient matrix. Let’s denote the coefficient matrix by **A** and the column matrix of variables by **X** and the right-hand side constants by **B**:

\[
A = \begin{bmatrix}
1 & -2 \\
-1 & 1
\end{bmatrix}, \quad
X = \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}, \quad
B = \begin{bmatrix}
k_1 \\
k_2
\end{bmatrix}
\]

The solution is given by:

\[
X = A^{-1}B
\]

### Examples

#### a. Solving for \( k_1 = -4 \) and \( k_2 = 2 \)

\[
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
0 \\
2
\end{bmatrix}
\]

Thus, \( x_1 = 0 \) and \( x_2 = 2 \).

#### b. Solving for \( k_1 = 4 \) and \( k_2 = 9 \)

\[
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
\boxed{} \\
\boxed{}
\end{bmatrix}
\]

Thus, we need to
Transcribed Image Text:## Solving a System of Equations Using Matrix Inverses Consider the following system of equations: \[ \begin{align*} x_1 - 2x_2 & = k_1 \\ -x_1 + x_2 & = k_2 \end{align*} \] We aim to write this system as a matrix equation and solve it using matrix inverses. ### Matrix Formulation The system can be represented in matrix form as: \[ \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \] ### Solving the System To find \( x_1 \) and \( x_2 \), we can use the inverse of the coefficient matrix. Let’s denote the coefficient matrix by **A** and the column matrix of variables by **X** and the right-hand side constants by **B**: \[ A = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad B = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \] The solution is given by: \[ X = A^{-1}B \] ### Examples #### a. Solving for \( k_1 = -4 \) and \( k_2 = 2 \) \[ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \] Thus, \( x_1 = 0 \) and \( x_2 = 2 \). #### b. Solving for \( k_1 = 4 \) and \( k_2 = 9 \) \[ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix} \] Thus, we need to
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,