SITUATION 1 (Fluid Flow in a Closed Conduit) Consider a fluid, with density (p) of 998.21 kg/m³ and dynamic viscosity (u) of 1.002 x 10³ N-s/m², flowing in a 2000-meter long, 50-mm diameter smooth round pipe with velocity of 2.5 m/s. The energy loss on the pipe flow (hr) due to friction between the pipe and the fluid is determined using Darcy-Weisbach equation, given as hy-1(²)() where f is the friction factor, L is the length of the pipe, D is the diameter of the pipe, V is the velocity of the flow, and g is the gravitational acceleration. The friction factor may be determined using an empirical equation developed by Nikuradse for flow in smooth pipes, given as 1 where Re is the Reynolds number of the flow, determined as = 0.869 In(R√√7) - 0.8 . R₁ = The friction factor equation given is only valid for flows with Reynolds number higher than 4000 (turbulent flow). VDp 14 Guide Questions: Determine the Reynolds number of the flow. Is the Nikuradse equation for friction factor applicable for this particular problem? Determine the required friction factor for determining the energy loss on the pipe flow. Use numerical methods to solve for f. Use a tolerance approximate error of 0.025%. Compare answers solved using: O bisection method; O fixed point iteration; O Newton-Raphson method; and O secant method Determine the approximate energy loss on the pipe flow.

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question
SITUATION 1 (Fluid Flow in a Closed Conduit)
Consider a fluid, with density (p) of 998.21 kg/m³ and dynamic viscosity (u) of 1.002 x 103 N-s/m², flowing in a 2000-meter long, 50-mm diameter
smooth round pipe with velocity of 2.5 m/s. The energy loss on the pipe flow (he) due to friction between the pipe and the fluid is determined using
Darcy-Weisbach equation, given as
h₁ = f (²) (1/1)
where f is the friction factor, L is the length of the pipe, D is the diameter of the pipe, V is the velocity of the flow, and g is the gravitational
acceleration. The friction factor may be determined using an empirical equation developed by Nikuradse for flow in smooth pipes, given as
1
=0.869 In (Re√7)-0.8
where Re is the Reynolds number of the flow, determined as
VDp
R₂ =
μl
The friction factor equation given is only valid for flows with Reynolds number higher than 4000 (turbulent flow).
Guide Questions:
Determine the Reynolds number of the flow. Is the Nikuradse equation for friction factor applicable for this particular problem?
Determine the required friction factor for determining the energy loss on the pipe flow. Use numerical methods to solve for f. Use a
tolerance approximate error of 0.025%. Compare answers solved using:
O
bisection method;
O
fixed point iteration;
O Newton-Raphson method; and
O
secant method
Determine the approximate energy loss on the pipe flow.
.
Transcribed Image Text:SITUATION 1 (Fluid Flow in a Closed Conduit) Consider a fluid, with density (p) of 998.21 kg/m³ and dynamic viscosity (u) of 1.002 x 103 N-s/m², flowing in a 2000-meter long, 50-mm diameter smooth round pipe with velocity of 2.5 m/s. The energy loss on the pipe flow (he) due to friction between the pipe and the fluid is determined using Darcy-Weisbach equation, given as h₁ = f (²) (1/1) where f is the friction factor, L is the length of the pipe, D is the diameter of the pipe, V is the velocity of the flow, and g is the gravitational acceleration. The friction factor may be determined using an empirical equation developed by Nikuradse for flow in smooth pipes, given as 1 =0.869 In (Re√7)-0.8 where Re is the Reynolds number of the flow, determined as VDp R₂ = μl The friction factor equation given is only valid for flows with Reynolds number higher than 4000 (turbulent flow). Guide Questions: Determine the Reynolds number of the flow. Is the Nikuradse equation for friction factor applicable for this particular problem? Determine the required friction factor for determining the energy loss on the pipe flow. Use numerical methods to solve for f. Use a tolerance approximate error of 0.025%. Compare answers solved using: O bisection method; O fixed point iteration; O Newton-Raphson method; and O secant method Determine the approximate energy loss on the pipe flow. .
Expert Solution
steps

Step by step

Solved in 7 steps with 7 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

hi can you transfer it google docs? I need it typewritten

Solution
Bartleby Expert
SEE SOLUTION
Similar questions
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY