Scientists can determine the age of ancient objects by the method of radiocarbon dating. The bombardment of the upper atmosphere by cosmic rays converts nitrogen to a radioactive isotope of carbon, 14C, with a half-life of about 5,730 years. Vegetation absorbs carbon dioxide through the atmosphere, and animal life assimilates 14C through food chains. When a plant or animal dies, it stops replacing its carbon, and the amount of 14C present begins to decrease through radioactive decay. Therefore, the level of radioactivity must also decay exponentially. Dinosaur fossils are too old to be reliably dated using carbon-14. Suppose we had a 66 million year old dinosaur fossil. What percent of the living dinosaur's 14C would be remaining today? (Round your answer to five decimal places.) 0.0000007537 X % Suppose the minimum detectable amount is 0.2%. What is the maximum age (in years) of a fossil that we could date using 14C? (Round your answer to the nearest year.) yr

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
Scientists can determine the age of ancient objects by the method of radiocarbon dating. The bombardment of the upper atmosphere by cosmic rays converts nitrogen to a radioactive isotope of
carbon, 14C, with a half-life of about 5,730 years. Vegetation absorbs carbon dioxide through the atmosphere, and animal life assimilates 14C through food chains. When a plant or animal dies, it stops
replacing its carbon, and the amount of 14C present begins to decrease through radioactive decay. Therefore, the level of radioactivity must also decay exponentially.
Dinosaur fossils are too old to be reliably dated using carbon-14. Suppose we had a 66 million year old dinosaur fossil. What percent of the living dinosaur's 14C would be remaining today? (Round
your answer to five decimal places.)
0.0000007537 X %
Suppose the minimum detectable amount is 0.2%. What is the maximum age (in years) of a fossil that we could date using 14C? (Round your answer to the nearest year.)
yr
Transcribed Image Text:Scientists can determine the age of ancient objects by the method of radiocarbon dating. The bombardment of the upper atmosphere by cosmic rays converts nitrogen to a radioactive isotope of carbon, 14C, with a half-life of about 5,730 years. Vegetation absorbs carbon dioxide through the atmosphere, and animal life assimilates 14C through food chains. When a plant or animal dies, it stops replacing its carbon, and the amount of 14C present begins to decrease through radioactive decay. Therefore, the level of radioactivity must also decay exponentially. Dinosaur fossils are too old to be reliably dated using carbon-14. Suppose we had a 66 million year old dinosaur fossil. What percent of the living dinosaur's 14C would be remaining today? (Round your answer to five decimal places.) 0.0000007537 X % Suppose the minimum detectable amount is 0.2%. What is the maximum age (in years) of a fossil that we could date using 14C? (Round your answer to the nearest year.) yr
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Rate Laws
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY