Saturated steam at an absolute pressure of 5 bar is used to heat a stream of dry air. Air enters a heat exchanger at 0 °C and an absolute pressure of 1 bar and at a rate of 1000 mol/min It is then heated at constant pressure to 100 °C. The steam condenses and leaves the exchanger as a saturated liquid at 54 °C. The specific enthalpy of air at the given pressure i kJ/mol at 0 °C and 3 kJ/mol at 100 °C. a. Draw and completely label the process flow diagram for this system. b. Calculate the volumetric flow rate of air. c. Based on the enthalpies provided, what is the reference state used for air? d. Calculate the energy needed to properly heat the air passing through the exchanger. e. Calculate the mass flow rate of steam supplied to the exchanger. Given: 1 bar = 105 N/m2, R = 0.08314 L bar/mol K, Q = AH, Q = AU, AĤ = AÛ + PAV, table B.6 in kJ/kg and m/kg.
Saturated steam at an absolute pressure of 5 bar is used to heat a stream of dry air. Air enters a heat exchanger at 0 °C and an absolute pressure of 1 bar and at a rate of 1000 mol/min It is then heated at constant pressure to 100 °C. The steam condenses and leaves the exchanger as a saturated liquid at 54 °C. The specific enthalpy of air at the given pressure i kJ/mol at 0 °C and 3 kJ/mol at 100 °C. a. Draw and completely label the process flow diagram for this system. b. Calculate the volumetric flow rate of air. c. Based on the enthalpies provided, what is the reference state used for air? d. Calculate the energy needed to properly heat the air passing through the exchanger. e. Calculate the mass flow rate of steam supplied to the exchanger. Given: 1 bar = 105 N/m2, R = 0.08314 L bar/mol K, Q = AH, Q = AU, AĤ = AÛ + PAV, table B.6 in kJ/kg and m/kg.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Using the table

Transcribed Image Text:TABLE B.6 Properties of Saturated Steam: Pressure Table
V(m³/kg)
Û (kJ/kg)
Ĥ (kJ/kg)
P(bar)
T(°C)
Water
Steam
Water
Steam
Water
Evaporation
Steam
0.001000
0.001000
2375.6
2380.7
+0.0
15.8
0.00611
2501.6
0.01
3.8
206.2
159.7
zero
2501.6
0.008
15.8
2492.6
2508.5
2485.0
2478.7
2473.2
0.010
7.0
0.001000
129.2
2385.2
2514.4
29.3
40.6
50.3
29.3
0.012
9.7
0.001000
108.7
2388.9
40.6
2519.3
12.0
93.9
2392.0
2394.8
2397.4
0.014
0.001000
50.3
2523.5
0.016
0.018
14.0
0.001001
82.8
58.9
58.9
2468.4
2527.3
15.9
0.001001
74.0
66.5
66.5
2464.1
2530.6
0.020
0.022
0.024
0.026
17.5
0.001001
67.0
73.5
2399.6
2401.7
2403.6
73.5
2460.2
2533.6
61.2
56.4
19.0
0.001002
79.8
79.8
2456.6
2536.4
20.4
0.001002
85.7
85.7
2453.3
2539.0
21.7
0.001002
52.3
91.1
2405.4
91.1
2450.2
2541.3
0.028
23.0
0.001002
48.7
96.2
2407.1
96.2
2447.3
2543.6
0.030
0.035
0.001003
101.0
111.8
2408.6
2412.2
2415.3
101.0
111.8
2545.6
2550.4
24.1
45.7
2444.6
39.5
2438.5
2433.1
26.7
0.001003
0.040
29.0
0.001004
34.8
121.4
121.4
2554.5
0.045
0.050
130.0
137.8
2428.2
2423.8
31.0
0.001005
31.1
130.0
2418.1
2558.2
32.9
0.001005
28.2
137.8
2420.6
2561.6
0.060
0.070
0.080
151.5
163.4
151.5
163.4
173.9
183.3
36.2
0.001006
23.74
2425.1
2416.0
2567.5
2409.2
39.0
41.5
43.8
0.001007
0.001008
0.001009
20.53
2428.9
2572.6
18.10
16.20
2432.3
2435.3
2438.0
173.9
2403.2
2397.9
2577.1
0.090
183.3
191.8
2581.1
0.10
45.8
0.001010
14.67
191.8
2392.9
2584.8
0.11
47.7
0.001011
13.42
199.7
2440.5
199.7
2388.4
49.4
51.1
52.6
2588.1
2591.2
2594.0
2596.7
206.9
213.7
0.12
0.001012
12.36
2442.8
206.9
2384.3
0.13
0.001013
11.47
2445.0
213.7
2380.4
0.14
0.001013
10.69
220.0
2447.0
220.0
2376.7
Appendix B Physical Property Tables 645
10.02
9.43
8.91
8.45
8.03
226.0
231.6
236.9
0.15
54.0
0.001014
2448.9
226.0
2373.2
2599.2
0.16
55.3
0.001015
2450.6
231.6
2370.0
2601.6
56.6
0.001015
2452.3
2453.9
2366.9
2603.8
0.17
0.18
236.9
57.8
0.001016
242.0
242.0
2363.9
2605.9
0.19
59.0
0.001017
246.8
2455.4
246.8
2361.1
2607.9
0.001017
0.001018
0.001019
251.5
260.1
268.2
251.5
260.1
268.2
0.20
60.1
2358.4
7.65
7.00
2456.9
2609.9
2459.6
2462.1
2353.3
2348.6
2613.5
2616.8
0.22
62.2
0.24
64.1
6.45
0.26
65.9
0.001020
5.98
275.6
2464.4
275.7
2344.2
2619.9
0.28
67.5
0.001021
5.58
282.7
2466.5
282.7
2340.0
2622.7
5.23
4.53
0.30
0.001022
2336.1
2327.2
69.1
289.3
2468.6
289.3
2625.4
0.35
72.7
0.001025
304.3
2473.1
304.3
2631.5
75.9
3.99
317.6
2477.1
317.7
2319.2
2636.9
2641.7
2646.0
0.40
0.001027
0.001028
0.45
0.50
78.7
81.3
329.6
2312.0
2305.4
3.58
2480.7
329.6
0.001030
3.24
340.5
2484.0
340.6
350.6
359.9
0.55
83.7
0.001032
2649.9
2.96
2.73
2.53
350.6
359.9
2486.9
2299.3
86.0
88.0
2489.7
2492.2
0.60
0.001033
0.001035
2293.6
2288.3
2283.3
2653.6
0.65
368.5
368.6
2656.9
0.001036
0.001037
0.70
90.0
2.36
376.7
2494.5
376.8
2660.1
0.75
91.8
2.22
384.4
2496.7
384.5
2278.6
2663.0
0.001039
0.001040
0.80
2.087
391.6
2498.8
2500.8
93.5
391.7
398.6
405.2
2274.1
2665.8
0.85
95.2
1.972
398.5
2269.8
2668.4
0.90
96.7
0.001041
1.869
405.1
2502.6
2265.6
2670.9
2673.2
2261.7
2257.9
0.95
98.2
0.001042
1.777
411.4
2504.4
411.5
1.00
1.01325
(1 atm)
99.6
0.001043
1.694
417.4
2506.1
417.5
2675.4
100.0
0.001044
1.673
419.0
2506.5
419.1
2256.9
2676.0

Transcribed Image Text:Saturated steam at an absolute pressure of 5 bar is used to heat a stream of dry air. Air enters a heat exchanger at 0 °C and an absolute pressure of 1 bar and at a rate of 1000 mol/min.
It is then heated at constant pressure to 100 °C. The steam condenses and leaves the exchanger as a saturated liquid at 54 °C. The specific enthalpy of air at the given pressure is 0
kJ/mol at 0 °C and 3 kJ/mol at 100 °C.
a. Draw and completely label the process flow diagram for this system.
b. Calculate the volumetric flow rate of air.
c. Based on the enthalpies provided, what is the reference state used for air?
d. Calculate the energy needed to properly heat the air passing through the exchanger.
e. Calculate the mass flow rate of steam supplied to the exchanger.
%3D
Given: 1 bar = 105 N/m2, R = 0.08314 L bar/mol K, Q = AH, Q = AU, AĤ = AÛ + PAÑ, table B.6 in kJ/kg and m /kg.
%3D
%3D
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY