Ryan is attempting to curl a 25-kg dumbbell. He manages to get his forearm to a horizontal position, temporarily holding the dumbbell stationary. The forearm is 30 cm in length and has a mass of 4.0 kg. [Consider the forearm to have uniform mass distribution.] The distal biceps tendon is attached to the radius (one of the two bones of the forearm) 5.5 cm from the elbow. Ryan applies maximum force in an attempt to complete the curl, but his tendon ruptures (i.e., tension goes to zero). What is the total moment of inertia about the elbow (after the rupture)?
Ryan is attempting to curl a 25-kg dumbbell. He manages to get his forearm to a horizontal position, temporarily holding the dumbbell stationary. The forearm is 30 cm in length and has a mass of 4.0 kg. [Consider the forearm to have uniform mass distribution.] The distal biceps tendon is attached to the radius (one of the two bones of the forearm) 5.5 cm from the elbow. Ryan applies maximum force in an attempt to complete the curl, but his tendon ruptures (i.e., tension goes to zero). What is the total moment of inertia about the elbow (after the rupture)?
Related questions
Question
Ryan is attempting to curl a 25-kg dumbbell. He manages to get his forearm to a horizontal position, temporarily holding the dumbbell stationary. The forearm is 30 cm in length and has a mass of 4.0 kg. [Consider the forearm to have uniform mass distribution.] The distal biceps tendon is attached to the radius (one of the two bones of the forearm) 5.5 cm from the elbow.
Ryan applies maximum force in an attempt to complete the curl, but his tendon ruptures (i.e., tension goes to zero).
What is the total moment of inertia about the elbow (after the rupture)?Select one:
a. 0.12 kg∙m2.
b. 2.25 kg∙m2.
c. 2.37 kg∙m2.
d. 2.28 kg∙m2.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps