Resuelva: Consideremos la función f(x) = cosx a. Determinar los polinomios de Maclaurin Po, P₂, P4, P6 b. Representar en la calculadora f y sus polinomios de Maclaurin citados. c. Evaluar y comparar los valores de f" (0) y P (0) para n = 2,4 y 6

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
I need help with B
Resuelva:
Consideremos la función f(x) = cosx
a. Determinar los polinomios de Maclaurin Po, P2, P4, P
b. Representar en la calculadora ƒ y sus polinomios de Maclaurin citados.
c. Evaluar y comparar los valores de f" (0) y Pr (0) paran = 2,4 y 6
d. Con los resultados del apartado (c), formular una conjetura sobre f"(0) y Pr (0
Transcribed Image Text:Resuelva: Consideremos la función f(x) = cosx a. Determinar los polinomios de Maclaurin Po, P2, P4, P b. Representar en la calculadora ƒ y sus polinomios de Maclaurin citados. c. Evaluar y comparar los valores de f" (0) y Pr (0) paran = 2,4 y 6 d. Con los resultados del apartado (c), formular una conjetura sobre f"(0) y Pr (0
Translation:
considering
the function f(x)=cos x
a. Determine Maclaurin polynomials
PO,P2,P4,P6.
b. Represent in the calculator f and its cited
Maclaurin polynomials.
c. evaluate and compare values of f^n (0) and
p^nn (0) for n= 2,4,6.
d. With the results of paragraph (c), make a
guess on f^n (0) and p^nn (0).
Transcribed Image Text:Translation: considering the function f(x)=cos x a. Determine Maclaurin polynomials PO,P2,P4,P6. b. Represent in the calculator f and its cited Maclaurin polynomials. c. evaluate and compare values of f^n (0) and p^nn (0) for n= 2,4,6. d. With the results of paragraph (c), make a guess on f^n (0) and p^nn (0).
Expert Solution
Step 1

Solution:Consider the Function: f(x) = cos(x)A Maclaurin series is given by f(x)=k=0nf(k)(a)k!xk In our case, f(x)P(x)=k=0nf(k)(a)k!xkP(x)=k=06f(k)(a)k!xkSo, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.  P0(x)=f(x)=cos(x) Evaluate the function at the point: P0(0)=1 Find the 1st derivative: P1(x)=(f(0)(x))'==sin(x)   Evaluate the 1st derivative at the given point: P1(0)=0 Find the 2nd derivative:  P2(x)= (P1(x))'=(sin(x))'=cos(x).  Evaluate the 2nd derivative at the given point: P2(0)=1 Find the 3rd derivative: P3(x)=( P2(x))'=(cos(x))'=sin(x).  Evaluate the 3rd derivative at the given point: P3(0)=0 Find the 4th derivative:  P4(x)=( P3(x))'=(sin(x))'=cos(x)Evaluate the 4th derivative at the given point: P4(0)=1 Find the 5th derivative:P5(x)=( P4(x))'=(cos(x))'=-sin(x)Evaluate the 5th derivative at the given point: P5(0)=0  Find the 6th derivative: P6(x)=( P5(x))'=-(sin(x))'=-cos(x) Evaluate the 6th derivative at the given point:P6(0)=-1 P2(x) = -cos(x),  P4(x)= cos(x) and P6(x)= -cos(x) P2(0)=1,  P4(0)=1 and P6(0)=-1

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning