Recitation 11 Problem 2 Eight fluid ounces (1 qt = fl 32 oz) of a beverage in a glass at 23.0 °C is to be cooled by adding ice and stirring. The properties of the beverage may be taken to be those of liquid water. The enthalpy of the ice relative to liquid water at the triple point is -348 kJ/kg. Estimate the mass of ice (g) that must melt to bring the liquid temperature to 4.0 °C, neglecting energy losses to the surroundings. (Note: For this isobaric batch process, the energy balance reduces to Q = AH)
Recitation 11 Problem 2 Eight fluid ounces (1 qt = fl 32 oz) of a beverage in a glass at 23.0 °C is to be cooled by adding ice and stirring. The properties of the beverage may be taken to be those of liquid water. The enthalpy of the ice relative to liquid water at the triple point is -348 kJ/kg. Estimate the mass of ice (g) that must melt to bring the liquid temperature to 4.0 °C, neglecting energy losses to the surroundings. (Note: For this isobaric batch process, the energy balance reduces to Q = AH)
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
100%

Transcribed Image Text:Recitation 11 Problem 2
Eight fluid ounces (1 qt = fl 32 oz) of a beverage in a glass
at 23.0 °C is to be cooled by adding ice and stirring. The
properties of the beverage may be taken to be those of liquid
water. The enthalpy of the ice relative to liquid water at the
triple point is -348 kJ/kg.
Estimate the mass of ice (g) that must melt to bring the liquid
temperature to 4.0 °C, neglecting energy losses to the
surroundings. (Note: For this isobaric batch process, the
energy balance reduces to Q = AH)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The