Reaction C _NaHCO3(s) -> NazCO3(s) + CO2(g) + _H2O(g) Run 1: Initial grams of NaHCO3 Theoretical yield (grams) of Na2CO3:_ Percent yield (Run 1) =

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
Reaction C
NaHCO3(s)
->
NazCO3(s) +
CO2(g) +
H20(g)
Run 1: Initial grams of NaHCO3
Theoretical yield (grams) of Na2CO3:
Percent yield (Run 1) =
Transcribed Image Text:Reaction C NaHCO3(s) -> NazCO3(s) + CO2(g) + H20(g) Run 1: Initial grams of NaHCO3 Theoretical yield (grams) of Na2CO3: Percent yield (Run 1) =
DATA
Record all masses to the maximum number of
Run 1
Run 2
sig figs
200°C
400°C
1.
Mass of beaker
81.061
27.986
2.
Mass of beaker + NaHCO3
85.457
32.267
3.
Initial mass of NaHCO3
4.476
4.292
Mass of beaker plus products after
heating.
4.
84.3 80
30.742
5.
Mass of product (actual yield)
There are three theoretically possible chemical reactions that could occur during the thermal decomposition of baking
soda.
1)
sodium bicarbonate (s) → sodium hydroxide (s) + carbon dioxide (g)
2)
sodium bicarbonate (s) → sodium oxide (s) + carbon dioxide (g) + water (g)
3)
sodium bicarbonate (s)→ sodium carbonate (s) + carbon dioxide (g) + water (g)
Transcribed Image Text:DATA Record all masses to the maximum number of Run 1 Run 2 sig figs 200°C 400°C 1. Mass of beaker 81.061 27.986 2. Mass of beaker + NaHCO3 85.457 32.267 3. Initial mass of NaHCO3 4.476 4.292 Mass of beaker plus products after heating. 4. 84.3 80 30.742 5. Mass of product (actual yield) There are three theoretically possible chemical reactions that could occur during the thermal decomposition of baking soda. 1) sodium bicarbonate (s) → sodium hydroxide (s) + carbon dioxide (g) 2) sodium bicarbonate (s) → sodium oxide (s) + carbon dioxide (g) + water (g) 3) sodium bicarbonate (s)→ sodium carbonate (s) + carbon dioxide (g) + water (g)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The