QUESTION What happens to the tension in the cable if the man in Figure (a) moves farther away from the wall? The tension would increase.The tension would decrease.
Rotational Equilibrium And Rotational Dynamics
In physics, the state of balance between the forces and the dynamics of motion is called the equilibrium state. The balance between various forces acting on a system in a rotational motion is called rotational equilibrium or rotational dynamics.
Equilibrium of Forces
The tension created on one body during push or pull is known as force.
A uniform horizontal beam 5.00 m long and weighting 3.03 102 N is attached to a wall by a pin connection that allows the beam to rotate. Its far end is supported by a cable that makes an angle of 53.0° with the horizontal (Figure (a)). If a person weighing 6.05 102 N stands 1.60 m from the wall, find the magnitude of the tension in the cable and the force exerted by the wall on the beam.
T | = N |
Rx | = N |
Ry | = N |
Even if we selected some other axis for the torque equation, the solution would be the same. For example, if the axis were to pass through the center of gravity of the beam, the torque equation would involve both T and Ry. Together with Equations (1) and (2), however, the unknowns could still be found—a good exercise. In this example, notice the steps of the Problem-Solving Strategy could be carried out in the explicit recommended order.
QUESTION What happens to the tension in the cable if the man in Figure (a) moves farther away from the wall?
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images