Problem #2: A 50.0-kg sign hangs from the end of a uniform strut. The strut is 4.0 m long and weighs 400.0 N. The strut is supported by a hinge at the wall and by a cable whose other end is tied to the wall at a point 3.0 m above the left end of the strut. Find a. the tension in the supporting cable b. the force of the hinge on the strut (magnitude and direction).
Problem #2: A 50.0-kg sign hangs from the end of a uniform strut. The strut is 4.0 m long and weighs 400.0 N. The strut is supported by a hinge at the wall and by a cable whose other end is tied to the wall at a point 3.0 m above the left end of the strut. Find a. the tension in the supporting cable b. the force of the hinge on the strut (magnitude and direction).
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter8: Rotational Equilibrium And Dynamics
Section: Chapter Questions
Problem 34P
Related questions
Concept explainers
Rotational Equilibrium And Rotational Dynamics
In physics, the state of balance between the forces and the dynamics of motion is called the equilibrium state. The balance between various forces acting on a system in a rotational motion is called rotational equilibrium or rotational dynamics.
Equilibrium of Forces
The tension created on one body during push or pull is known as force.
Question
![**Problem #2:** A 50.0-kg sign hangs from the end of a uniform strut. The strut is 4.0 m long and weighs 400.0 N. The strut is supported by a hinge at the wall and by a cable whose other end is tied to the wall at a point 3.0 m above the left end of the strut. Find:
- a. the tension in the supporting cable
- b. the force of the hinge on the strut (magnitude and direction).
**Diagram Explanation:**
- A wall is depicted on the left side of the diagram with a horizontal strut extending 4.0 m to the right.
- A sign labeled "GAS" hangs vertically from the end of the strut.
- A cable runs diagonally from the right end of the strut to a point on the wall 3.0 m above the hinge.
- The distances provided are: 5.0 m as the hypotenuse from hinge to the wall attachment point, 3.0 m vertically from the hinge to cable attachment on the wall, and 4.0 m horizontally as the length of the strut.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe57d9078-3a26-4ab9-a5c6-f67f173c178d%2F903cc3fa-a9c0-446e-baeb-46392fb3ee50%2Fnfw6cfer_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem #2:** A 50.0-kg sign hangs from the end of a uniform strut. The strut is 4.0 m long and weighs 400.0 N. The strut is supported by a hinge at the wall and by a cable whose other end is tied to the wall at a point 3.0 m above the left end of the strut. Find:
- a. the tension in the supporting cable
- b. the force of the hinge on the strut (magnitude and direction).
**Diagram Explanation:**
- A wall is depicted on the left side of the diagram with a horizontal strut extending 4.0 m to the right.
- A sign labeled "GAS" hangs vertically from the end of the strut.
- A cable runs diagonally from the right end of the strut to a point on the wall 3.0 m above the hinge.
- The distances provided are: 5.0 m as the hypotenuse from hinge to the wall attachment point, 3.0 m vertically from the hinge to cable attachment on the wall, and 4.0 m horizontally as the length of the strut.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![Physics for Scientists and Engineers: Foundations…](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
![College Physics](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![Physics for Scientists and Engineers: Foundations…](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
![College Physics](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![College Physics](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Physics for Scientists and Engineers with Modern …](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning