Question 19 of 25 The molar solubility of Mg(CN)2 is 1.4 x 10-5 M at a certain temperature. Determine the value of Ksp for Mg(CN). NEXT Based on the given values, fill in the ICE table to determine concentrations of all reactants and products. Mg(CN)-(s) Mg (aq) 2 CN-(aq) Initial (M) Change (M) Equilibrium (M) O RESET 1.4 x 105 -1.4 x 10-5 2.8 x 10-5 -2.8 x 10-5 +x +2x -2x 1.4 x 10-5 +x 1.4 x 10- + 2x 1.4 x 10-5 - x 1.4 x 10- - 2x 2.8 x 10-5 + x 2.8 x 10+ 2r -X 28x 10-5 -x 2.8 x 10- 2x
Ionic Equilibrium
Chemical equilibrium and ionic equilibrium are two major concepts in chemistry. Ionic equilibrium deals with the equilibrium involved in an ionization process while chemical equilibrium deals with the equilibrium during a chemical change. Ionic equilibrium is established between the ions and unionized species in a system. Understanding the concept of ionic equilibrium is very important to answer the questions related to certain chemical reactions in chemistry.
Arrhenius Acid
Arrhenius acid act as a good electrolyte as it dissociates to its respective ions in the aqueous solutions. Keeping it similar to the general acid properties, Arrhenius acid also neutralizes bases and turns litmus paper into red.
Bronsted Lowry Base In Inorganic Chemistry
Bronsted-Lowry base in inorganic chemistry is any chemical substance that can accept a proton from the other chemical substance it is reacting with.
![**Determining the Solubility Product Constant (Ksp) for Mg(CN)₂**
The molar solubility of Mg(CN)₂ is given as 1.4 × 10⁻⁵ M at a certain temperature. Our objective is to determine the value of the solubility product constant (Ksp) for Mg(CN)₂.
**Guidance:**
Fill in the ICE (Initial, Change, Equilibrium) table to determine the concentrations of reactants and products in equilibrium based on the given solubility.
### ICE Table
| | Mg(CN)₂(s) | ⇌ | Mg²⁺(aq) | + | 2 CN⁻(aq) |
|----------------------|------------|---|----------|---|-----------|
| **Initial (M)** | | | | | |
| **Change (M)** | | | | | |
| **Equilibrium (M)** | | | | | |
### Choices for Values
Below the table, several options are available for each entry in the table:
- **Initial (M):** Usually starts at 0 for product ions as the solid begins to dissolve.
- **Change (M):** Indicated by typical chemical equilibrium terms such as ±x, 1.4 × 10⁻⁵, or 1.4 × 10⁻⁵ ± x.
- **Equilibrium (M):** Final concentrations are computed based on the changes that occurred.
Utilize these values to adequately fill the table and compute Ksp using the relation:
\[ K_{sp} = [\text{Mg}^{2+}][\text{CN}^-]^2 \]
This setup guides the calculations required to find the equilibrium concentrations and support the derivation of Ksp.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb393cf68-6058-47dc-b87c-0617b976ea27%2Fb9bcd809-f401-45a8-bde7-f8da10a65cdd%2Ffxkonhi_processed.jpeg&w=3840&q=75)
![**Question 19 of 25**
The molar solubility of Mg(CN)₂ is \(1.4 \times 10^{-5}\) M at a certain temperature. Determine the value of Ksp for Mg(CN)₂.
**Instructions:**
Based on the setup of your ICE table, construct the expression for Ksp and then evaluate it. Do not combine or simplify terms.
\[ K_{sp} = \, \text{[ ]} = \, \text{[ ]} \]
**Available Options:**
- \([0]\)
- \([1.4 \times 10^{-5}]\)
- \([2.8 \times 10^{-5}]\)
- \([1.4 \times 10^{-5}]^2\)
- \([2.8 \times 10^{-5}]^2\)
- \([x]\)
- \([2x]^2\)
- \([1.4 \times 10^{-5} + x]\)
- \([1.4 \times 10^{-5} - x]\)
- \([1.4 \times 10^{-5} - 2x]\)
- \([1.4 \times 10^{-5} + x]^2\)
- \([2.8 \times 10^{-5} - x]\)
- \([2.8 \times 10^{-5} + 2x]\)
**Expression Options:**
- \(2.7 \times 10^{-15}\)
- \(1.1 \times 10^{-14}\)
- \(2.2 \times 10^{-14}\)
- \(3.9 \times 10^{-10}\)
**Reset Button:**
To start over, press the "RESET" button.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb393cf68-6058-47dc-b87c-0617b976ea27%2Fb9bcd809-f401-45a8-bde7-f8da10a65cdd%2Fnlm8wii_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)