QUESTION 1 A vertical vibrating system of 5 kg of mass and 500 N/m of spring stiffness is critically damped. The system is excited by a step input force f(t) = 50 N to generate an output vertical motion y(t), in metres, and t-is the time in seconds. 1.1. Determine the transfer function of the system 1.2. Provide an equivalent block diagram with a unitary negative feedback to control the motion y(t) 1.3. Using s-plane, locate the closed loop pole(s) and zero (s) of the system and provide the reasons of stability or non-stability of the system Using the technique of partial fractions, establish the analytical expression of the time response of the vibrating system.
QUESTION 1 A vertical vibrating system of 5 kg of mass and 500 N/m of spring stiffness is critically damped. The system is excited by a step input force f(t) = 50 N to generate an output vertical motion y(t), in metres, and t-is the time in seconds. 1.1. Determine the transfer function of the system 1.2. Provide an equivalent block diagram with a unitary negative feedback to control the motion y(t) 1.3. Using s-plane, locate the closed loop pole(s) and zero (s) of the system and provide the reasons of stability or non-stability of the system Using the technique of partial fractions, establish the analytical expression of the time response of the vibrating system.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY