Q 3. Design a rigid flange coupling to transmit a torque of 250 N-m between two coaxial shafts. The shaft is made of alloy steel, flanges out of cast iron and bolts out of steel. Four bolts are used to couple the flanges. The shafts are keyed to the flange hub. The permissible stresses are given below: Shear stress on shaft =100 MPa Bearing or crushing stress on shaft =250 MPa Shear stress on keys =100 MPa Bearing stress on keys =250 MPa Shearing stress on cast iron =200 MPa Shear stress on bolts =100 MPa After designing the various elements, make a neat sketch of the assembly indicating the important dimensions. The stresses developed in the various members may be checked if thumb rules are used for fixing the dimensions.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
icon
Concept explainers
Question
100%

Q 3. Design a rigid flange coupling to transmit a torque of 250 N-m between two coaxial shafts.
The shaft is made of alloy steel, flanges out of cast iron and bolts out of steel. Four bolts are
used to couple the flanges. The shafts are keyed to the flange hub. The permissible stresses are
given below:
Shear stress on shaft =100 MPa
Bearing or crushing stress on shaft =250 MPa
Shear stress on keys =100 MPa
Bearing stress on keys =250 MPa
Shearing stress on cast iron =200 MPa
Shear stress on bolts =100 MPa
After designing the various elements, make a neat sketch of the assembly indicating the
important dimensions. The stresses developed in the various members may be checked if thumb
rules are used for fixing the dimensions.
Transcribed Image Text:Q 3. Design a rigid flange coupling to transmit a torque of 250 N-m between two coaxial shafts. The shaft is made of alloy steel, flanges out of cast iron and bolts out of steel. Four bolts are used to couple the flanges. The shafts are keyed to the flange hub. The permissible stresses are given below: Shear stress on shaft =100 MPa Bearing or crushing stress on shaft =250 MPa Shear stress on keys =100 MPa Bearing stress on keys =250 MPa Shearing stress on cast iron =200 MPa Shear stress on bolts =100 MPa After designing the various elements, make a neat sketch of the assembly indicating the important dimensions. The stresses developed in the various members may be checked if thumb rules are used for fixing the dimensions.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Knowledge Booster
Combined Loading
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY