p(z>-1.56) Find for the standard normal distribution. Table E The Standard Normal Distribution Cumulative Standard Normal Distribution .00 .01 .02 .03 .04 .05 .06 .07 .08 09 <-3.4 .0003 0003 0003 .0003 0003 0003 0003 0003 .0003 0002 <-3.3 0005 .0005 .0005 .0004 .0004 0004 .0004 .0004 .0004 .0003 <-3.2 0007 0007 0006 .0006 0006 0006 0006 0005 0005 .0005 <-3.1 J0010 0009 0009 .0009 .0008 .0008 .0008 .0008 0007 .0007 <-3.0 .0013 0013 .0013 .0012 0012 0011 0011 .0011 .0010 .0010 -2.9 0019 .0018 .0018 .0017 0016 .0016 .0015 0015 .0014 .0014 -2.8 0026 0025 .0024 .0023 .0023 0022 0021 0021 0020 .0019 -2.7 0035 0034 0033 .0032 0031 0030 .0029 .0028 .0027 .0026 -2.6 0047 .0045 0044 0043 0041 0040 0039 0038 .0037 0036 -2.5 0062 0060 0059 0057 .0055 0054 0052 0051 .0049 0048 -2.4 .0082 0080 .0078 .0075 .0073 0071 .0069 0068 .0066 0064 -2.3 0107 0104 0102 0099 0096 0094 .0091 0089 .0087 0084 -2.2 0139 0136 0132 0129 0125 0122 0119 .0116 0113 O110 -2.1 0179 0174 0170 0166 0162 0158 0154 0150 0146 0143 -2.0 .0228 0222 0217 0212 0207 0202 0197 0192 .0188 0183 -1.9 0287 0281 0274 0268 0262 0256 .0250 0244 .0239 .0233 -1.8 0359 0351 0344 0336 0329 0322 .0314 .0307 0301 0294 -1.7 .0446 0436 0427 0418 0409 0401 0392 .0384 0375 .0367 -1.6 0548 0537 0526 0516 0505 0495 .0485 .0475 0465 0455 -1.5 0668 0655 0643 0630 0618 0606 0594 0582 .0571 .0559 0.0594 O 0.9406 O 0.0156 O None of these
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Step by step
Solved in 2 steps