p(z>-1.56) Find for the standard normal distribution. Table E The Standard Normal Distribution Cumulative Standard Normal Distribution .00 .01 .02 .03 .04 .05 .06 .07 .08 09 <-3.4 .0003 0003 0003 .0003 0003 0003 0003 0003 .0003 0002 <-3.3 0005 .0005 .0005 .0004 .0004 0004 .0004 .0004 .0004 .0003 <-3.2 0007 0007 0006 .0006 0006 0006 0006 0005 0005 .0005 <-3.1 J0010 0009 0009 .0009 .0008 .0008 .0008 .0008 0007 .0007 <-3.0 .0013 0013 .0013 .0012 0012 0011 0011 .0011 .0010 .0010 -2.9 0019 .0018 .0018 .0017 0016 .0016 .0015 0015 .0014 .0014 -2.8 0026 0025 .0024 .0023 .0023 0022 0021 0021 0020 .0019 -2.7 0035 0034 0033 .0032 0031 0030 .0029 .0028 .0027 .0026 -2.6 0047 .0045 0044 0043 0041 0040 0039 0038 .0037 0036 -2.5 0062 0060 0059 0057 .0055 0054 0052 0051 .0049 0048 -2.4 .0082 0080 .0078 .0075 .0073 0071 .0069 0068 .0066 0064 -2.3 0107 0104 0102 0099 0096 0094 .0091 0089 .0087 0084 -2.2 0139 0136 0132 0129 0125 0122 0119 .0116 0113 O110 -2.1 0179 0174 0170 0166 0162 0158 0154 0150 0146 0143 -2.0 .0228 0222 0217 0212 0207 0202 0197 0192 .0188 0183 -1.9 0287 0281 0274 0268 0262 0256 .0250 0244 .0239 .0233 -1.8 0359 0351 0344 0336 0329 0322 .0314 .0307 0301 0294 -1.7 .0446 0436 0427 0418 0409 0401 0392 .0384 0375 .0367 -1.6 0548 0537 0526 0516 0505 0495 .0485 .0475 0465 0455 -1.5 0668 0655 0643 0630 0618 0606 0594 0582 .0571 .0559 0.0594 O 0.9406 O 0.0156 O None of these

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
100%
### Finding \( P(z > -1.56) \) for the Standard Normal Distribution

Given the standard normal distribution, we aim to find \( P(z > -1.56) \). We will use the cumulative standard normal distribution table (Table E) provided in the image.

#### Table E: The Standard Normal Distribution
This table provides the cumulative probabilities for the standard normal distribution. The table displays the area to the left of a specified z-value.

##### Cumulative Standard Normal Distribution
The rows in the table represent the z-values up to the first decimal place, while the columns represent the hundredth decimal place of the z-values. For example:

- For \( z = -1.5 \), look at the row labeled \(-1.5\).
- For \( z = -1.56 \), look at the column labeled \(.06\) in the row for \(-1.5\).

Now follow these steps to find \( P(z > -1.56) \):

**Step 1: Identify \( P(z \leq -1.56) \)**
To find \( P(z \leq -1.56) \), locate the intersection of \( -1.5 \) row and the \( .06 \) column:
- The value at the intersection is \( 0.0594 \).

**Step 2: Calculate \( P(z > -1.56) \)**
Since the total area under the curve is 1, we use the complement rule:
\[ P(z > -1.56) = 1 - P(z \leq -1.56) \]
\[ P(z > -1.56) = 1 - 0.0594 \]
\[ P(z > -1.56) = 0.9406 \]

#### Explanation of the Diagram
The table shows \( P(z \leq z_0) \) for values of \( z_0 \) ranging from \(-3.4\) to \(3.4\). Each cell represents the cumulative probability up to that z-value. The rows and columns help pinpoint exact probabilities for various z-values to facilitate statistical analysis and problem-solving.

#### Conclusion
Therefore, \( P(z > -1.56) \) for the standard normal distribution is:

\[ 0.9406 \]

### Answer Options
- \( 0.0594 \)
- **\( 0
Transcribed Image Text:### Finding \( P(z > -1.56) \) for the Standard Normal Distribution Given the standard normal distribution, we aim to find \( P(z > -1.56) \). We will use the cumulative standard normal distribution table (Table E) provided in the image. #### Table E: The Standard Normal Distribution This table provides the cumulative probabilities for the standard normal distribution. The table displays the area to the left of a specified z-value. ##### Cumulative Standard Normal Distribution The rows in the table represent the z-values up to the first decimal place, while the columns represent the hundredth decimal place of the z-values. For example: - For \( z = -1.5 \), look at the row labeled \(-1.5\). - For \( z = -1.56 \), look at the column labeled \(.06\) in the row for \(-1.5\). Now follow these steps to find \( P(z > -1.56) \): **Step 1: Identify \( P(z \leq -1.56) \)** To find \( P(z \leq -1.56) \), locate the intersection of \( -1.5 \) row and the \( .06 \) column: - The value at the intersection is \( 0.0594 \). **Step 2: Calculate \( P(z > -1.56) \)** Since the total area under the curve is 1, we use the complement rule: \[ P(z > -1.56) = 1 - P(z \leq -1.56) \] \[ P(z > -1.56) = 1 - 0.0594 \] \[ P(z > -1.56) = 0.9406 \] #### Explanation of the Diagram The table shows \( P(z \leq z_0) \) for values of \( z_0 \) ranging from \(-3.4\) to \(3.4\). Each cell represents the cumulative probability up to that z-value. The rows and columns help pinpoint exact probabilities for various z-values to facilitate statistical analysis and problem-solving. #### Conclusion Therefore, \( P(z > -1.56) \) for the standard normal distribution is: \[ 0.9406 \] ### Answer Options - \( 0.0594 \) - **\( 0
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman