Prove from the definition of the definite integral that ·b [² zdr = 1/2 (b²-a²). x dx You may freely use the following identity without proof: 1+2+ +n= n(n + 1) 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Prove from the definition of the definite integral that
[*z dx = 1 (10² - a²).
x
You may freely use the following identity without proof:
1+2+ + n =
n(n+1)
2
Transcribed Image Text:Prove from the definition of the definite integral that [*z dx = 1 (10² - a²). x You may freely use the following identity without proof: 1+2+ + n = n(n+1) 2
Expert Solution
Step 1: Solving the problem

w e space h a v e space t o space f i n d space o u t integral subscript a superscript b x d x space
W e space k n o w space t h a t space
space integral subscript a superscript b f left parenthesis x right parenthesis d x equals left parenthesis b minus a right parenthesis limit as n rightwards arrow infinity of space 1 over n left parenthesis f left parenthesis a right parenthesis plus f left parenthesis a plus h right parenthesis plus f left parenthesis a plus 2 h right parenthesis... plus space f left parenthesis a space plus space left parenthesis n space minus space 1 right parenthesis space asterisk times space h right parenthesis space right parenthesis space
space P u t t i n g space space a space equals space a space comma space b space equals space b space comma space h space equals space fraction numerator b minus a over denominator n end fraction comma space f left parenthesis x right parenthesis space equals space x

steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,