Prove one of the following formulas from the table of integrals: S: √a²-x²2 a²x + C dx x²√a²-x²

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
### Proving Integration Formulas from the Table of Integrals

The task is to prove one of the following integration formulas from the table of integrals:

1. \[
\int \frac{dx}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x} + C
\]

2. \[
\int \frac{x^2}{\sqrt{a^2 - x^2}} \, dx = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C
\]

### Detailed Explanation:

1. **Integral of \(\frac{1}{x^2 \sqrt{a^2 - x^2}}\)**:
   - The integral \(\int \frac{dx}{x^2 \sqrt{a^2 - x^2}}\) simplifies to \(-\frac{\sqrt{a^2 - x^2}}{a^2 x} + C\).
   - Here, \(a\) is a constant and \(C\) represents the constant of integration.

2. **Integral of \(\frac{x^2}{\sqrt{a^2 - x^2}}\)**:
   - The integral \(\int \frac{x^2}{\sqrt{a^2 - x^2}} \, dx\) simplifies to \(-\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C\).
   - In this expression, \(\sin^{-1}\) denotes the inverse sine function (also known as the arcsine function), and \(C\) again represents the constant of integration.

### Step-by-Step Proof Strategy:
1. **For the First Integral**:
   - Use trigonometric substitution \( x = a \sin \theta\) or \( x = a \cos \theta\) to simplify the integrand.
   - Transform the integral into a more manageable form using the corresponding derivatives and identities.
   - Integrate using standard trigonometric or algebraic techniques.
   - Simplify the result to achieve the final expression.

2. **For the Second Integral**
Transcribed Image Text:### Proving Integration Formulas from the Table of Integrals The task is to prove one of the following integration formulas from the table of integrals: 1. \[ \int \frac{dx}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x} + C \] 2. \[ \int \frac{x^2}{\sqrt{a^2 - x^2}} \, dx = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C \] ### Detailed Explanation: 1. **Integral of \(\frac{1}{x^2 \sqrt{a^2 - x^2}}\)**: - The integral \(\int \frac{dx}{x^2 \sqrt{a^2 - x^2}}\) simplifies to \(-\frac{\sqrt{a^2 - x^2}}{a^2 x} + C\). - Here, \(a\) is a constant and \(C\) represents the constant of integration. 2. **Integral of \(\frac{x^2}{\sqrt{a^2 - x^2}}\)**: - The integral \(\int \frac{x^2}{\sqrt{a^2 - x^2}} \, dx\) simplifies to \(-\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C\). - In this expression, \(\sin^{-1}\) denotes the inverse sine function (also known as the arcsine function), and \(C\) again represents the constant of integration. ### Step-by-Step Proof Strategy: 1. **For the First Integral**: - Use trigonometric substitution \( x = a \sin \theta\) or \( x = a \cos \theta\) to simplify the integrand. - Transform the integral into a more manageable form using the corresponding derivatives and identities. - Integrate using standard trigonometric or algebraic techniques. - Simplify the result to achieve the final expression. 2. **For the Second Integral**
Expert Solution
steps

Step by step

Solved in 3 steps with 16 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning