Prove each statement using either weak, strong, or structural induction. Make sure to clearly indicate the different parts of your proof: the basis step, the inductive hypothesis, what you will show in the inductive step, and the inductive step. Make sure to clearly format your proofs and to write in complete, clear sentences. EXAMPLE: Prove that for any nonnegative integer n, Σ i = (n+1) Answer: Proof. (by weak induction) Basis step: n = 1 Σ=1 1(1+1)==1 Therefore, (n+1) when n = 1. = Inductive hypothesis: Assume that Inductive step: We will show that i=1 i=1 i= = (+1) for some integer k > 1. i= (k+1)((k+1)+1) k+1 Σ=Σ+ (κ + 1) i=1 By inductive hypothesis, k+1 Σ IME i=1 k(k+1) = +k+1 2 k(k+1)+2(k+1) = 2 (k+2)(k+1) = 2 (k+1)((k+1)+1) 2 Therefore, by weak induction, we have shown that = (n+1) for all nonnegative integers n. Prove that 9" 2" is divisible by 7 for all positive integers n.
Prove each statement using either weak, strong, or structural induction. Make sure to clearly indicate the different parts of your proof: the basis step, the inductive hypothesis, what you will show in the inductive step, and the inductive step. Make sure to clearly format your proofs and to write in complete, clear sentences. EXAMPLE: Prove that for any nonnegative integer n, Σ i = (n+1) Answer: Proof. (by weak induction) Basis step: n = 1 Σ=1 1(1+1)==1 Therefore, (n+1) when n = 1. = Inductive hypothesis: Assume that Inductive step: We will show that i=1 i=1 i= = (+1) for some integer k > 1. i= (k+1)((k+1)+1) k+1 Σ=Σ+ (κ + 1) i=1 By inductive hypothesis, k+1 Σ IME i=1 k(k+1) = +k+1 2 k(k+1)+2(k+1) = 2 (k+2)(k+1) = 2 (k+1)((k+1)+1) 2 Therefore, by weak induction, we have shown that = (n+1) for all nonnegative integers n. Prove that 9" 2" is divisible by 7 for all positive integers n.
Operations Research : Applications and Algorithms
4th Edition
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Wayne L. Winston
Chapter21: Simulation
Section21.5: Simulations With Continuous Random Variables
Problem 6P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Operations Research : Applications and Algorithms
Computer Science
ISBN:
9780534380588
Author:
Wayne L. Winston
Publisher:
Brooks Cole
LINUX+ AND LPIC-1 GDE.TO LINUX CERTIF.
Computer Science
ISBN:
9781337569798
Author:
ECKERT
Publisher:
CENGAGE L
Programming Logic & Design Comprehensive
Computer Science
ISBN:
9781337669405
Author:
FARRELL
Publisher:
Cengage
Operations Research : Applications and Algorithms
Computer Science
ISBN:
9780534380588
Author:
Wayne L. Winston
Publisher:
Brooks Cole
LINUX+ AND LPIC-1 GDE.TO LINUX CERTIF.
Computer Science
ISBN:
9781337569798
Author:
ECKERT
Publisher:
CENGAGE L
Programming Logic & Design Comprehensive
Computer Science
ISBN:
9781337669405
Author:
FARRELL
Publisher:
Cengage
Principles of Information Systems (MindTap Course…
Computer Science
ISBN:
9781285867168
Author:
Ralph Stair, George Reynolds
Publisher:
Cengage Learning
C++ Programming: From Problem Analysis to Program…
Computer Science
ISBN:
9781337102087
Author:
D. S. Malik
Publisher:
Cengage Learning