++ PROGRAMMING Topic: Binary Search Trees Explain the c++ code below.: SEE ATTACHED PHOTO FOR THE PROBLEM INSTRUCTIONS  It doesn't have to be long, as long as you explain what the important parts of the code do. (The code is already implemented and correct, only the explanation needed)  #include "node.h" #include

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
100%

C++ PROGRAMMING
Topic: Binary Search Trees

Explain the c++ code below.: SEE ATTACHED PHOTO FOR THE PROBLEM INSTRUCTIONS 

It doesn't have to be long, as long as you explain what the important parts of the code do. (The code is already implemented and correct, only the explanation needed) 

#include "node.h"
#include <iostream>
using namespace std;
class BTree {
    node* root;
    int size;

    node* create_node(int num, node* parent) {
        node* n = (node*) malloc( sizeof(node) );
        n->element = num;
        n->parent = parent;
        n->right = NULL;
        n->left = NULL;
        return n;
    }

    public:
    BTree() {
        root = NULL;
        size = 0;
    }

    node* left(node* p) {    
        return p->left;
    }

    node* right(node* p) {
        return p->right;
    }

    node* sibling(node* p){
        if(p != root){
            node* P = p->parent;
            if(P->left != NULL && P->right != NULL){
                if(P->left->element == p->element){
                    return P->right;
                }
                if(P->right->element == p->element){
                    return P->left;
                }
            }
        }
        return NULL;
    }

    node* addRoot(int e) {
        if(size != 0){
            cout<<"Error"<<endl;
            return NULL;
        }
        root = create_node(e,NULL);
        size++;
        return root;
    }

    node* addLeft(node* p, int e) {
        if(p->left == NULL){
            node* newLeft = create_node(e,NULL);
            newLeft->parent = p;
            p->left = newLeft;
            size++;
            return p->left;
        }
        cout << "Error" << endl;
        return NULL;
    }

    node* addRight(node* p, int e) {
        
         if(p->right == NULL){
            node* newRight = create_node(e,NULL);
            newRight->parent = p;
            p->right = newRight;
            size++;
            return p->right;
        }
        cout << "Error" << endl;
        return NULL;
        
    }

    int _size() {
        return size;
    }

    bool isEmpty() {
        return (size==0);
    }

    int childCount(node* p) {
        return 0;
    }

    int set(node* p, int e) {
        return 0;
    }

    node* addSibling(node* p, int e) {
        return NULL;
    }

    void clear(){

    }

    void attach(node* p, BTree* t1, BTree* t2) {

    }

    int remove(node* p) {
        return 0;
    }

    // WARNING. Do not modify this method.
    // Doing so will nullify your score for this activity.
    void print() {
        if (isEmpty()) {
            cout << "EMPTY";
            return;
        }
        print_inorder(root);
        cout << endl << "STATUS: " << check_health(root, NULL);
    }


    // WARNING. Do not modify this method.
    // Doing so will nullify your score for this activity.
    void print_inorder(node* curr) {
        if (curr->left != NULL) {
            print_inorder(curr->left);
        }
        cout << curr->element << " ";
        if (curr->right != NULL) {
            print_inorder(curr->right);
        }
    }

    // WARNING. Do not modify this method.
    // Doing so will nullify your score for this activity.
    bool check_health(node* curr, node* parent) {
        bool health = curr->parent == parent;
        if (curr->left != NULL) {
            health &= check_health(curr->left, curr);
        }
        if (curr->right != NULL) {
            health &= check_health(curr->right, curr);
        }
        return health;
    }
};
•node* left(node* p): Returns the position of the left child of p (or NULL if p has no left child).
•node* right(node* p): Returns the position of the right child of p (or NULL if p has no right child).
•node* sibling(node* p): Returns the position of the sibling of p (or NULL if p has no sibling).
•node* addRoot(int e): Creates a root for an empty tree, storing e as the element, and returns the position of that root; an error occurs if the tree is not
empty wherein you are going to simply print "Error" with an end line (endl) and return NULL. Do this procedure for all the errors mentioned in this activity.
•node* addLeft(node* p, int e): Creates a left child of position p, storing element e, and returns the position of the new node; an error occurs if p already has
a left child.
•node* addRight(node* p, int e): Creates a right child of position p, storing element e, and returns the position of the new node; an error occurs if p already
has a right child.
•int _size(): Returns the size of the tree.
•bool isEmpty(): Returns true if the tree is empty.
Transcribed Image Text:•node* left(node* p): Returns the position of the left child of p (or NULL if p has no left child). •node* right(node* p): Returns the position of the right child of p (or NULL if p has no right child). •node* sibling(node* p): Returns the position of the sibling of p (or NULL if p has no sibling). •node* addRoot(int e): Creates a root for an empty tree, storing e as the element, and returns the position of that root; an error occurs if the tree is not empty wherein you are going to simply print "Error" with an end line (endl) and return NULL. Do this procedure for all the errors mentioned in this activity. •node* addLeft(node* p, int e): Creates a left child of position p, storing element e, and returns the position of the new node; an error occurs if p already has a left child. •node* addRight(node* p, int e): Creates a right child of position p, storing element e, and returns the position of the new node; an error occurs if p already has a right child. •int _size(): Returns the size of the tree. •bool isEmpty(): Returns true if the tree is empty.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education