Problem II Consider a linear transformation L₁ R4 → R³ given below and a linear operator L₂ R³ R³ given by L₂(x, y, z) = (x + 2y — 3z, 2x + 5y + z, 3x + 8y + 5z). Let L = L₂0 L₁ be their composition, i.e., L(v) = L₂(L₁(v)) for all v € R¹. - (i) Find the matrix of the linear transformation L. (ii) Find a basis for the range of L. (iii) Find a basis for the kernel of L. 21. L₁ (U1, U2, U3, U4) = (v₁ +2V2, V4, Us). 22. L₁(U1, U2, U3, U4) = (U3, 202 - V4, V₁). 23. L₁(U1, U2, U3, U4) = (v2 - 2V3, V4, V₁). 24. L₁ (U1, U2, U3, U4) = (v2V3, V1, 204). 25. L₁ (U1, U2, U3, U4) = (V₁, V₁ + V2, Vs). 26. L₁(U1, U2, U3, U4) = (U₁ +2U3, U4, U2). 27. L₁ (U1, U2, U3, U4) = (303 — 204, U2, U₁). 28. L₁(U1, U2, U3, U4) = (V₁, V₁ + V3, V₂). 29. L₁(U₁, U2, U3, U₁) = (V3 - 2V4, V₁, V₂). 30. L1 (U1, U2, U3, U4) = (V₁ + V₁, V2₂ +V4, V3). 31. L₁(v1, U2, U3, U₁) = (v₁, 202 + V₁, V3). 32. L₁(v1, U2, U3, U4) = (U3, 2V2, V₁ — V₁). 33. L₁(V1, V2, V3, V4) = (V2, V4, V1 - 203). 34. L₁(V1, V2, V3, V4) = (V2, V₁ — U3, 204). 35. L₁(V₁, V2, V3, V4) = (V₁, V2, V₁ + V3). 36. L₁(V₁, V2, U3, U4) (203, U4, U1+U₂). 37. L₁(v1, U2, U3, U4) 38. L₁(v₁, U2, U3, U4) - (303, 02204, V₁). = (V4, V3, V₁ + V₂). 39. L₁(V₁, V2, V3, V₁) = (V3, V₁, V₂ - 20₁). 40. L₁(V1, V2, V3, V₁) = (V₁ — V₁, V2, V3). =
Problem II Consider a linear transformation L₁ R4 → R³ given below and a linear operator L₂ R³ R³ given by L₂(x, y, z) = (x + 2y — 3z, 2x + 5y + z, 3x + 8y + 5z). Let L = L₂0 L₁ be their composition, i.e., L(v) = L₂(L₁(v)) for all v € R¹. - (i) Find the matrix of the linear transformation L. (ii) Find a basis for the range of L. (iii) Find a basis for the kernel of L. 21. L₁ (U1, U2, U3, U4) = (v₁ +2V2, V4, Us). 22. L₁(U1, U2, U3, U4) = (U3, 202 - V4, V₁). 23. L₁(U1, U2, U3, U4) = (v2 - 2V3, V4, V₁). 24. L₁ (U1, U2, U3, U4) = (v2V3, V1, 204). 25. L₁ (U1, U2, U3, U4) = (V₁, V₁ + V2, Vs). 26. L₁(U1, U2, U3, U4) = (U₁ +2U3, U4, U2). 27. L₁ (U1, U2, U3, U4) = (303 — 204, U2, U₁). 28. L₁(U1, U2, U3, U4) = (V₁, V₁ + V3, V₂). 29. L₁(U₁, U2, U3, U₁) = (V3 - 2V4, V₁, V₂). 30. L1 (U1, U2, U3, U4) = (V₁ + V₁, V2₂ +V4, V3). 31. L₁(v1, U2, U3, U₁) = (v₁, 202 + V₁, V3). 32. L₁(v1, U2, U3, U4) = (U3, 2V2, V₁ — V₁). 33. L₁(V1, V2, V3, V4) = (V2, V4, V1 - 203). 34. L₁(V1, V2, V3, V4) = (V2, V₁ — U3, 204). 35. L₁(V₁, V2, V3, V4) = (V₁, V2, V₁ + V3). 36. L₁(V₁, V2, U3, U4) (203, U4, U1+U₂). 37. L₁(v1, U2, U3, U4) 38. L₁(v₁, U2, U3, U4) - (303, 02204, V₁). = (V4, V3, V₁ + V₂). 39. L₁(V₁, V2, V3, V₁) = (V3, V₁, V₂ - 20₁). 40. L₁(V1, V2, V3, V₁) = (V₁ — V₁, V2, V3). =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
please solve parts 25-28 of this problem... take as much time as you need.
![Problem II Consider a linear transformation L₁ R4 → R³ given below and a linear
operator L₂ R³ R³ given by L₂(x, y, z) = (x + 2y — 3z, 2x + 5y + z, 3x + 8y + 5z). Let
L = L₂0 L₁ be their composition, i.e., L(v) = L₂(L₁(v)) for all v € R¹.
-
(i) Find the matrix of the linear transformation L.
(ii) Find a basis for the range of L.
(iii) Find a basis for the kernel of L.
21. L₁ (U1, U2, U3, U4) = (v₁ +2V2, V4, Us).
22. L₁(U1, U2, U3, U4) = (U3, 202 - V4, V₁).
23. L₁(U1, U2, U3, U4) = (v2 - 2V3, V4, V₁).
24. L₁ (U1, U2, U3, U4) = (v2V3, V1, 204).
25. L₁ (U1, U2, U3, U4) = (V₁, V₁ + V2, Vs).
26. L₁(U1, U2, U3, U4) = (U₁ +2U3, U4, U2).
27. L₁ (U1, U2, U3, U4) = (303 — 204, U2, U₁).
28. L₁(U1, U2, U3, U4) = (V₁, V₁ + V3, V₂).
29. L₁(U₁, U2, U3, U₁) = (V3 - 2V4, V₁, V₂).
30. L1 (U1, U2, U3, U4) = (V₁ + V₁, V2₂ +V4, V3).
31. L₁(v1, U2, U3, U₁) = (v₁, 202 + V₁, V3).
32. L₁(v1, U2, U3, U4) = (U3, 2V2, V₁ — V₁).
33. L₁(V1, V2, V3, V4) = (V2, V4, V1 - 203).
34. L₁(V1, V2, V3, V4) = (V2, V₁ — U3, 204).
35. L₁(V₁, V2, V3, V4) = (V₁, V2, V₁ + V3).
36. L₁(V₁, V2, U3, U4) (203, U4, U1+U₂).
37. L₁(v1, U2, U3, U4)
38. L₁(v₁, U2, U3, U4)
-
(303, 02204, V₁).
= (V4, V3, V₁ + V₂).
39. L₁(V₁, V2, V3, V₁) = (V3, V₁, V₂ - 20₁).
40. L₁(V1, V2, V3, V₁) = (V₁ — V₁, V2, V3).
=](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F47d370c3-9e4b-442d-9a89-d591c5ced338%2Fff038b37-c019-427e-81c0-4e0549dd8a82%2Fcbwwrhp_processed.png&w=3840&q=75)
Transcribed Image Text:Problem II Consider a linear transformation L₁ R4 → R³ given below and a linear
operator L₂ R³ R³ given by L₂(x, y, z) = (x + 2y — 3z, 2x + 5y + z, 3x + 8y + 5z). Let
L = L₂0 L₁ be their composition, i.e., L(v) = L₂(L₁(v)) for all v € R¹.
-
(i) Find the matrix of the linear transformation L.
(ii) Find a basis for the range of L.
(iii) Find a basis for the kernel of L.
21. L₁ (U1, U2, U3, U4) = (v₁ +2V2, V4, Us).
22. L₁(U1, U2, U3, U4) = (U3, 202 - V4, V₁).
23. L₁(U1, U2, U3, U4) = (v2 - 2V3, V4, V₁).
24. L₁ (U1, U2, U3, U4) = (v2V3, V1, 204).
25. L₁ (U1, U2, U3, U4) = (V₁, V₁ + V2, Vs).
26. L₁(U1, U2, U3, U4) = (U₁ +2U3, U4, U2).
27. L₁ (U1, U2, U3, U4) = (303 — 204, U2, U₁).
28. L₁(U1, U2, U3, U4) = (V₁, V₁ + V3, V₂).
29. L₁(U₁, U2, U3, U₁) = (V3 - 2V4, V₁, V₂).
30. L1 (U1, U2, U3, U4) = (V₁ + V₁, V2₂ +V4, V3).
31. L₁(v1, U2, U3, U₁) = (v₁, 202 + V₁, V3).
32. L₁(v1, U2, U3, U4) = (U3, 2V2, V₁ — V₁).
33. L₁(V1, V2, V3, V4) = (V2, V4, V1 - 203).
34. L₁(V1, V2, V3, V4) = (V2, V₁ — U3, 204).
35. L₁(V₁, V2, V3, V4) = (V₁, V2, V₁ + V3).
36. L₁(V₁, V2, U3, U4) (203, U4, U1+U₂).
37. L₁(v1, U2, U3, U4)
38. L₁(v₁, U2, U3, U4)
-
(303, 02204, V₁).
= (V4, V3, V₁ + V₂).
39. L₁(V₁, V2, V3, V₁) = (V3, V₁, V₂ - 20₁).
40. L₁(V1, V2, V3, V₁) = (V₁ — V₁, V2, V3).
=
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)