PROBLEM 7: Binary Relations, Functions and Orderings (15 pts) 1. (2 pts) Prove that ({2, 3, 4, 6, 24, 36, 72}, /) is a poset, create its corresponding Hasse diagram and identify maximal and minimal elements. 2. (1 pts) Prove that (P{1, 2, 3}, C) is a poset, create its corresponding Hasse diagram and identify maximal and minimal elements 3. Assume the following mapping, captured by variable map: map = { 72 {1,2,3}, 36 {3}, 24 {1,2}, 6- → {3}, 4 {1,3}, 2➡ {} } Provide answers to the following in detail (in plain english and formally): (a) (2 pts) Is variable map a function? If so, is it a total or a partial function? Identify domain and codomain. (b) (10 pts) Discuss all properties (injectivity, surjectivity, bijection, order preserving, order reflecting, order embedding, isomorphism). NOTE: When we reason formally on a property we must state: (1) What Law do we expect to hold or not hold, and (2) Does this Law indeed hold or Is this Law violated?
PROBLEM 7: Binary Relations, Functions and Orderings (15 pts) 1. (2 pts) Prove that ({2, 3, 4, 6, 24, 36, 72}, /) is a poset, create its corresponding Hasse diagram and identify maximal and minimal elements. 2. (1 pts) Prove that (P{1, 2, 3}, C) is a poset, create its corresponding Hasse diagram and identify maximal and minimal elements 3. Assume the following mapping, captured by variable map: map = { 72 {1,2,3}, 36 {3}, 24 {1,2}, 6- → {3}, 4 {1,3}, 2➡ {} } Provide answers to the following in detail (in plain english and formally): (a) (2 pts) Is variable map a function? If so, is it a total or a partial function? Identify domain and codomain. (b) (10 pts) Discuss all properties (injectivity, surjectivity, bijection, order preserving, order reflecting, order embedding, isomorphism). NOTE: When we reason formally on a property we must state: (1) What Law do we expect to hold or not hold, and (2) Does this Law indeed hold or Is this Law violated?
Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter2: Systems Of Linear Equations
Section2.4: Applications
Problem 33EQ
Related questions
Question

Transcribed Image Text:PROBLEM 7: Binary Relations, Functions and Orderings (15 pts)
1. (2 pts) Prove that ({2, 3, 4, 6, 24, 36, 72}, /) is a poset, create its corresponding Hasse
diagram and identify maximal and minimal elements.
2. (1 pts) Prove that (P{1, 2, 3}, C) is a poset, create its corresponding Hasse diagram
and identify maximal and minimal elements
3. Assume the following mapping, captured by variable map:
map =
{
72 {1,2,3},
36
{3},
24 {1,2},
6- → {3},
4 {1,3},
2➡ {}
}
Provide answers to the following in detail (in plain english and formally):
(a) (2 pts) Is variable map a function? If so, is it a total or a partial function? Identify
domain and codomain.
(b) (10 pts) Discuss all properties (injectivity, surjectivity, bijection, order preserving,
order reflecting, order embedding, isomorphism).
NOTE: When we reason formally on a property we must state: (1) What Law do we expect
to hold or not hold, and (2) Does this Law indeed hold or Is this Law violated?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning