Let N= {1, 2, 3, 4, .} be the set of natural numbers and S= (1, 4, 9, 16, ...} be the set of squares of the natural numbers. Then N - S, since we have the one-to-one correspondence 1 + 1, 2 + 4, 3 + 9, 4 + 16, ... n+ n?. (This example is interesting, since it shows that an infinite set can be equivalent to a proper subset of itself.) Show that each of the following pairs of sets are equivalent by carefully describing a one-to-one correspondence between the sets. Complete parts (a) through (c) below. (a) The whole numbers and natural numbers, W = {0, 1, 2, 3, ..} and N= {1, 2, 3, 4, ...} Which of the following describes a one-to-one correspondence between the two sets? O A. For each element in W, there is an element in N that is double that element. O B. For each element in w. there is an element in N that is 1 areater than double that element.
Permutations and Combinations
If there are 5 dishes, they can be relished in any order at a time. In permutation, it should be in a particular order. In combination, the order does not matter. Take 3 letters a, b, and c. The possible ways of pairing any two letters are ab, bc, ac, ba, cb and ca. It is in a particular order. So, this can be called the permutation of a, b, and c. But if the order does not matter then ab is the same as ba. Similarly, bc is the same as cb and ac is the same as ca. Here the list has ab, bc, and ac alone. This can be called the combination of a, b, and c.
Counting Theory
The fundamental counting principle is a rule that is used to count the total number of possible outcomes in a given situation.
Step by step
Solved in 2 steps with 2 images