Problem 4: A conducting rod spans a gap of length L = 0.248 m and acts as the fourth side of a rectangular conducting loop, as shown in the figure. A constant magnetic field B = 0.75 T pointing into the paper is in the region. The rod is moving under an external force with an acceleration a = At?, where A = 5.5 m/s*. The resistance in the wire is R = 185 Q. X X X X B X X X X Randomized Variables R V X X' L = 0.248 m B = 0.75 T X X A = 5.5 m/s R = 185 2 Part (a) Express the magnitude of the magnetic flux going through the loop, , in terms of B, x and L. HOME A B d | A 4 5 6. 1 1 2 3 + END P vol BACKSPACE CLEAR Submit Hint Feedback I give up! Part (b) Express the speed of the rod, v, in terms of A and t. Assume v = 0 at t = 0. Part (c) Express the position of the rod, x, in terms of A and t. Assume x = 0 at t = 0. Part (d) Express the derivative of the magnetic flux, do/dt, in terms of B, A, L and t. Part (e) Express the magnitude of the emf induced in the loop, ɛ, in terms of B, L, A and t. ww
Problem 4: A conducting rod spans a gap of length L = 0.248 m and acts as the fourth side of a rectangular conducting loop, as shown in the figure. A constant magnetic field B = 0.75 T pointing into the paper is in the region. The rod is moving under an external force with an acceleration a = At?, where A = 5.5 m/s*. The resistance in the wire is R = 185 Q. X X X X B X X X X Randomized Variables R V X X' L = 0.248 m B = 0.75 T X X A = 5.5 m/s R = 185 2 Part (a) Express the magnitude of the magnetic flux going through the loop, , in terms of B, x and L. HOME A B d | A 4 5 6. 1 1 2 3 + END P vol BACKSPACE CLEAR Submit Hint Feedback I give up! Part (b) Express the speed of the rod, v, in terms of A and t. Assume v = 0 at t = 0. Part (c) Express the position of the rod, x, in terms of A and t. Assume x = 0 at t = 0. Part (d) Express the derivative of the magnetic flux, do/dt, in terms of B, A, L and t. Part (e) Express the magnitude of the emf induced in the loop, ɛ, in terms of B, L, A and t. ww
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
answer parts c, d, and e
![Problem 4: A conducting rod spans a gap of length L = 0.248 m and acts as the fourth side
of a rectangular conducting loop, as shown in the figure. A constant magnetic field B = 0.75 T
pointing into the paper is in the region. The rod is moving under an external force with an
acceleration a = At?, where A = 5.5 m/s*. The resistance in the wire is R = 185 Q.
X
X
B
X
Randomized Variables
R
L
L = 0.248 m
X
X
X
B = 0.75 T
X
X
X
A = 5.5 m/s
R= 185 Q
X
Part (a) Express the magnitude of the magnetic flux going through the loop, , in terms of B, x and L.
7
8
HOME
A
В
d
5
6
h
* 1
2 3
1
m
-
END
vol BACKSPACE DEL CLEAR
Submit
Hint
Feedback
I give up!
Part (b) Express the speed of the rod, v, in terms of A and t. Assume v = 0 at t = 0.
Part (c) Express the position of the rod, x, in terms of A and t. Assume x = 0 at t = 0.
Part (d) Express the derivative of the magnetic flux, do/
Part (e) Express the magnitude of the emf induced in the loop, ɛ, in terms of B, L. A and t.
Part (f) Express the current induced in the loop, I, in terms of ɛ and R.
Part (g) Express the current induced in the loop, I, in terms of B, L, A, t, and R.
Part (h) Calculate the numerical value of I at t= 2s in A.
in terms of B, A, L and t.
www](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3438e7ce-5324-474c-a439-cbe639191e4b%2Fad5cbfb8-f5aa-48b0-bacc-b27ff8c44987%2Fns3i529_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Problem 4: A conducting rod spans a gap of length L = 0.248 m and acts as the fourth side
of a rectangular conducting loop, as shown in the figure. A constant magnetic field B = 0.75 T
pointing into the paper is in the region. The rod is moving under an external force with an
acceleration a = At?, where A = 5.5 m/s*. The resistance in the wire is R = 185 Q.
X
X
B
X
Randomized Variables
R
L
L = 0.248 m
X
X
X
B = 0.75 T
X
X
X
A = 5.5 m/s
R= 185 Q
X
Part (a) Express the magnitude of the magnetic flux going through the loop, , in terms of B, x and L.
7
8
HOME
A
В
d
5
6
h
* 1
2 3
1
m
-
END
vol BACKSPACE DEL CLEAR
Submit
Hint
Feedback
I give up!
Part (b) Express the speed of the rod, v, in terms of A and t. Assume v = 0 at t = 0.
Part (c) Express the position of the rod, x, in terms of A and t. Assume x = 0 at t = 0.
Part (d) Express the derivative of the magnetic flux, do/
Part (e) Express the magnitude of the emf induced in the loop, ɛ, in terms of B, L. A and t.
Part (f) Express the current induced in the loop, I, in terms of ɛ and R.
Part (g) Express the current induced in the loop, I, in terms of B, L, A, t, and R.
Part (h) Calculate the numerical value of I at t= 2s in A.
in terms of B, A, L and t.
www
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON