Problem 2: A 5.0-mm-diameter proton beam carries a total current of I = 1.5 mA. The current density in the proton beam, which increases with distance from the center, is given by J = Jedge (r/R), where R is the radius of the beam and Jedge is the current density at the edge. Determine the value of Jedge. a) Fig. 3 shows the cross section of the beam. Compute the current dI flowing through the ring of radius r and width dr shown in the figure. Notice that for small dr the area of the ring can be approximated by the area of a rectangle that you can get by "unrolling" the ring.
Problem 2: A 5.0-mm-diameter proton beam carries a total current of I = 1.5 mA. The current density in the proton beam, which increases with distance from the center, is given by J = Jedge (r/R), where R is the radius of the beam and Jedge is the current density at the edge. Determine the value of Jedge. a) Fig. 3 shows the cross section of the beam. Compute the current dI flowing through the ring of radius r and width dr shown in the figure. Notice that for small dr the area of the ring can be approximated by the area of a rectangle that you can get by "unrolling" the ring.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Hello, can you please help me with part C, because I feel like I got the wrong answer, my answer that I got was 229.3 a/m^2 but the answer doesn't seem right, can you help me with part C. Thank you.

Transcribed Image Text:Problem 2: A 5.0-mm-diameter proton beam carries a total current of
I = 1.5 mA. The current density in the proton beam, which increases
with distance from the center, is given by J = Jedge (r/R), where R is the
radius of the beam and Jedge is the current density at the edge. Determine
the value of Jedge.
a) Fig. 3 shows the cross section of the beam. Compute the current
dI flowing through the ring of radius r and width dr shown in the figure.
Notice that for small dr the area of the ring can be approximated by the
area of a rectangle that you can get by "unrolling" the ring.
dr
dr
c) How many protons per second are delivered by this proton beam?
2Tr
R
FIG. 3: The scheme for Problem 2
b) Sum up the contributions from all rings by integrating dI with respect to the radial coordinate r,
r=R
I = f dI. Express Jedge as a function of I and R and compute its value.
r=0
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON