Problem 1 (Using thermodynamic tables) A large refrigeration plant is to be maintained at -12 C. It requires refrigeration at a rate of 120 kW. The condenser of the plant is to be cooled by liquid water, which experiences a temperature rise of 10 C as it flows over the coils of the condenser. Assuming the plant operates on the ideal vapor-compression cycle using refrigerant- 134a between the pressure limits of 100 and 700 kPa,  determine (a) the mass flow rate of the refrigerant, (b) the power input to the compressor, and (c) the mass flow rate of the cooling water

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Problem 1 (Using thermodynamic tables)
A large refrigeration plant is to be maintained at -12 C. It requires refrigeration at a rate of 120 kW.
The condenser of the plant is to be cooled by liquid water, which experiences a temperature rise of 10 C as it flows over the coils of the condenser. Assuming the plant operates on the ideal vapor-compression cycle using refrigerant- 134a between the pressure limits of 100 and 700 kPa, 
determine (a) the mass flow rate of the refrigerant, (b) the power input to the compressor,

and (c) the mass flow rate of the cooling water

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY