Problem 1: Let n N so that n ≥ 2. Assume that for a, b, a', b' = Z, a = b (mod n) and a' = b' (mod n), Prove that (a + a') = (b + b') (mod n) and that aa' = bb' (mod n) and that for any k € N+ that ak = bk (mod n).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 1:**

Let \( n \in \mathbb{N} \) so that \( n \geq 2 \). Assume that for \( a, b, a', b' \in \mathbb{Z} \), \( a \equiv b \pmod{n} \) and \( a' \equiv b' \pmod{n} \), Prove that

\[ (a + a') \equiv (b + b') \pmod{n} \]

and that

\[ aa' \equiv bb' \pmod{n} \]

and that for any \( k \in \mathbb{N}^{+} \) that \( a^k \equiv b^k \pmod{n} \).
Transcribed Image Text:**Problem 1:** Let \( n \in \mathbb{N} \) so that \( n \geq 2 \). Assume that for \( a, b, a', b' \in \mathbb{Z} \), \( a \equiv b \pmod{n} \) and \( a' \equiv b' \pmod{n} \), Prove that \[ (a + a') \equiv (b + b') \pmod{n} \] and that \[ aa' \equiv bb' \pmod{n} \] and that for any \( k \in \mathbb{N}^{+} \) that \( a^k \equiv b^k \pmod{n} \).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,