Potential of a Modified Infinite Plane Consider an infinite plane at z = 0 where the potential is zero everywhere along the plane, except inside the circle of radius a, centered at the origin maintained at potential Vo. In this problem, you will use the Green's function method. Show that along the axis of the circle (s = 0), the potential is given by V(7) = Vo (1 -

icon
Related questions
Question
Potential of a Modified Infinite Plane
Consider an infinite plane at z = 0 where the potential is zero everywhere along the plane, except
inside the circle of radius a, centered at the origin maintained at potential Vo. In this problem, you
will use the Green's function method.
Show that along the axis of the circle (s = 0), the potential is given by
%3D
V (F) = Vo (1- Ja? + 2
Transcribed Image Text:Potential of a Modified Infinite Plane Consider an infinite plane at z = 0 where the potential is zero everywhere along the plane, except inside the circle of radius a, centered at the origin maintained at potential Vo. In this problem, you will use the Green's function method. Show that along the axis of the circle (s = 0), the potential is given by %3D V (F) = Vo (1- Ja? + 2
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer