Please use BS4, Regular Expressions or Pandas to read in the two data files below. Then calculate the average of 'decimal' column in co2.html, 'TOPEX' column in SeaLevel.csv for each year. Finally, combine those 2 data into 1 to printout. Sample could be: Year CO2 Sea_Level 1959 ......... ......... Co2.html: # Total carbon emissions # (million metric tons of C) yearmonthdecimalaverageinterpolatedtrend#days 195911959.042315.62315.62315.70-1 195921959.125316.38316.38315.88-1 195931959.208316.71316.71315.62-1 195941959.292317.72317.72315.56-1 195951959.375318.29318.29315.50-1 195961959.458318.15318.15315.92-1 195971959.542316.54316.54315.66-1 195981959.625314.80314.80315.81-1 195991959.708313.84313.84316.55-1 1959101959.792313.26313.26316.19-1 1959111959.875314.80314.80316.78-1 ... SeaLevel.csv #title = mean sea level anomaly global ocean (66S to 66N) (Annual signals retained) #institution = NOAA/Laboratory for Satellite Altimetry #references = NOAA Sea Level Rise year,TOPEX/Poseidon,Jason-1,Jason-2,Jason-3 1992.9614,-16.27000, 1992.9865,-17.97000, 1993.0123,-14.87000, 1993.0407,-19.87000, 1993.0660,-25.27000, 1993.0974,-29.37000, 1993.1206,-27.67000, 1993.1493,-21.87000, 1993.1765,-18.97000, 1993.2037,-19.47000, 1993.2307,-22.97000, 1993.2851,-26.27000, 1993.3123,-20.07000, 1993.3394,-19.87000, 1998.8234,6.53000, 1998.8505,2.53000, 1998.8775,-4.07000, 1998.9046,-10.17000, 1998.9319,-3.97000, 1998.9591,-3.27000, 1998.9862,0.13000, 1999.0133,-4.17000, 1999.0405,-6.87000, 1999.0948,-11.17000, 1999.1256,3.73000, 1999.1491,-1.27000, 1999.1763,-6.37000, 1999.2034,-11.77000, 1999.2306,-10.37000, 1999.2577,-7.87000, 1999.2848,-5.37000, 1999.3392,-8.27000, 1999.3663,-13.77000, 2001.6738,5.43000, 2001.7010,15.73000, 2001.7283,16.73000, 2001.7553,14.93000, 2001.7825,7.73000, 2001.8096,4.03000, 2001.8368,11.63000, 2001.8639,16.53000, 2001.8918,14.53000, 2001.9182,10.93000, 2001.9454,4.73000, 2001.9725,3.63000, 2002.1083,-1.67000,6.23000, 2002.1352,6.33000, 2002.1354,-0.17000, 2002.1626,4.43000,4.93000, 2002.1897,4.93000, 2002.1898,-1.27000, ...
Please use BS4, Regular Expressions or Pandas to read in the two data files below. Then calculate the average of 'decimal' column in co2.html, 'TOPEX' column in SeaLevel.csv for each year. Finally, combine those 2 data into 1 to printout. Sample could be: Year CO2 Sea_Level 1959 ......... ......... Co2.html: # Total carbon emissions # (million metric tons of C) yearmonthdecimalaverageinterpolatedtrend#days 195911959.042315.62315.62315.70-1 195921959.125316.38316.38315.88-1 195931959.208316.71316.71315.62-1 195941959.292317.72317.72315.56-1 195951959.375318.29318.29315.50-1 195961959.458318.15318.15315.92-1 195971959.542316.54316.54315.66-1 195981959.625314.80314.80315.81-1 195991959.708313.84313.84316.55-1 1959101959.792313.26313.26316.19-1 1959111959.875314.80314.80316.78-1 ... SeaLevel.csv #title = mean sea level anomaly global ocean (66S to 66N) (Annual signals retained) #institution = NOAA/Laboratory for Satellite Altimetry #references = NOAA Sea Level Rise year,TOPEX/Poseidon,Jason-1,Jason-2,Jason-3 1992.9614,-16.27000, 1992.9865,-17.97000, 1993.0123,-14.87000, 1993.0407,-19.87000, 1993.0660,-25.27000, 1993.0974,-29.37000, 1993.1206,-27.67000, 1993.1493,-21.87000, 1993.1765,-18.97000, 1993.2037,-19.47000, 1993.2307,-22.97000, 1993.2851,-26.27000, 1993.3123,-20.07000, 1993.3394,-19.87000, 1998.8234,6.53000, 1998.8505,2.53000, 1998.8775,-4.07000, 1998.9046,-10.17000, 1998.9319,-3.97000, 1998.9591,-3.27000, 1998.9862,0.13000, 1999.0133,-4.17000, 1999.0405,-6.87000, 1999.0948,-11.17000, 1999.1256,3.73000, 1999.1491,-1.27000, 1999.1763,-6.37000, 1999.2034,-11.77000, 1999.2306,-10.37000, 1999.2577,-7.87000, 1999.2848,-5.37000, 1999.3392,-8.27000, 1999.3663,-13.77000, 2001.6738,5.43000, 2001.7010,15.73000, 2001.7283,16.73000, 2001.7553,14.93000, 2001.7825,7.73000, 2001.8096,4.03000, 2001.8368,11.63000, 2001.8639,16.53000, 2001.8918,14.53000, 2001.9182,10.93000, 2001.9454,4.73000, 2001.9725,3.63000, 2002.1083,-1.67000,6.23000, 2002.1352,6.33000, 2002.1354,-0.17000, 2002.1626,4.43000,4.93000, 2002.1897,4.93000, 2002.1898,-1.27000, ...
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Please use BS4, Regular Expressions or Pandas to read in the two data files below.
Then calculate the average of 'decimal' column in co2.html, 'TOPEX' column in SeaLevel.csv for each year.
Finally, combine those 2 data into 1 to printout.
Sample could be:
Year CO2 Sea_Level
1959 ......... .........
Co2.html:
<TABLE summary="csv2html program output">
<TBODY><TR><TD># Total carbon emissions </TD></TR></TBODY>
<TBODY><TR><TD># (million metric tons of C)</TD></TR></TBODY>
<TBODY><TR><TD>year</TD><TD>month</TD><TD>decimal</TD><TD>average</TD><TD>interpolated</TD><TD>trend</TD><TD>#days</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>1</TD><TD>1959.042</TD><TD>315.62</TD><TD>315.62</TD><TD>315.70</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>2</TD><TD>1959.125</TD><TD>316.38</TD><TD>316.38</TD><TD>315.88</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>3</TD><TD>1959.208</TD><TD>316.71</TD><TD>316.71</TD><TD>315.62</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>4</TD><TD>1959.292</TD><TD>317.72</TD><TD>317.72</TD><TD>315.56</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>5</TD><TD>1959.375</TD><TD>318.29</TD><TD>318.29</TD><TD>315.50</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>6</TD><TD>1959.458</TD><TD>318.15</TD><TD>318.15</TD><TD>315.92</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>7</TD><TD>1959.542</TD><TD>316.54</TD><TD>316.54</TD><TD>315.66</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>8</TD><TD>1959.625</TD><TD>314.80</TD><TD>314.80</TD><TD>315.81</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>9</TD><TD>1959.708</TD><TD>313.84</TD><TD>313.84</TD><TD>316.55</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>10</TD><TD>1959.792</TD><TD>313.26</TD><TD>313.26</TD><TD>316.19</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>11</TD><TD>1959.875</TD><TD>314.80</TD><TD>314.80</TD><TD>316.78</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD># Total carbon emissions </TD></TR></TBODY>
<TBODY><TR><TD># (million metric tons of C)</TD></TR></TBODY>
<TBODY><TR><TD>year</TD><TD>month</TD><TD>decimal</TD><TD>average</TD><TD>interpolated</TD><TD>trend</TD><TD>#days</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>1</TD><TD>1959.042</TD><TD>315.62</TD><TD>315.62</TD><TD>315.70</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>2</TD><TD>1959.125</TD><TD>316.38</TD><TD>316.38</TD><TD>315.88</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>3</TD><TD>1959.208</TD><TD>316.71</TD><TD>316.71</TD><TD>315.62</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>4</TD><TD>1959.292</TD><TD>317.72</TD><TD>317.72</TD><TD>315.56</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>5</TD><TD>1959.375</TD><TD>318.29</TD><TD>318.29</TD><TD>315.50</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>6</TD><TD>1959.458</TD><TD>318.15</TD><TD>318.15</TD><TD>315.92</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>7</TD><TD>1959.542</TD><TD>316.54</TD><TD>316.54</TD><TD>315.66</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>8</TD><TD>1959.625</TD><TD>314.80</TD><TD>314.80</TD><TD>315.81</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>9</TD><TD>1959.708</TD><TD>313.84</TD><TD>313.84</TD><TD>316.55</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>10</TD><TD>1959.792</TD><TD>313.26</TD><TD>313.26</TD><TD>316.19</TD><TD>-1</TD></TR></TBODY>
<TBODY><TR><TD>1959</TD><TD>11</TD><TD>1959.875</TD><TD>314.80</TD><TD>314.80</TD><TD>316.78</TD><TD>-1</TD></TR></TBODY>
...
SeaLevel.csv
#title = mean sea level anomaly global ocean (66S to 66N) (Annual signals retained)
#institution = NOAA/Laboratory for Satellite Altimetry
#references = NOAA Sea Level Rise
year,TOPEX/Poseidon,Jason-1,Jason-2,Jason-3
1992.9614,-16.27000,
1992.9865,-17.97000,
1993.0123,-14.87000,
1993.0407,-19.87000,
1993.0660,-25.27000,
1993.0974,-29.37000,
1993.1206,-27.67000,
1993.1493,-21.87000,
1993.1765,-18.97000,
1993.2037,-19.47000,
1993.2307,-22.97000,
1993.2851,-26.27000,
1993.3123,-20.07000,
1993.3394,-19.87000,
1998.8234,6.53000,
1998.8505,2.53000,
1998.8775,-4.07000,
1998.9046,-10.17000,
1998.9319,-3.97000,
1998.9591,-3.27000,
1998.9862,0.13000,
1999.0133,-4.17000,
1999.0405,-6.87000,
1999.0948,-11.17000,
1999.1256,3.73000,
1999.1491,-1.27000,
1999.1763,-6.37000,
1999.2034,-11.77000,
1999.2306,-10.37000,
1999.2577,-7.87000,
1999.2848,-5.37000,
1999.3392,-8.27000,
1999.3663,-13.77000,
2001.6738,5.43000,
2001.7010,15.73000,
2001.7283,16.73000,
2001.7553,14.93000,
2001.7825,7.73000,
2001.8096,4.03000,
2001.8368,11.63000,
2001.8639,16.53000,
2001.8918,14.53000,
2001.9182,10.93000,
2001.9454,4.73000,
2001.9725,3.63000,
2002.1083,-1.67000,6.23000,
2002.1352,6.33000,
2002.1354,-0.17000,
2002.1626,4.43000,4.93000,
2002.1897,4.93000,
2002.1898,-1.27000,
#institution = NOAA/Laboratory for Satellite Altimetry
#references = NOAA Sea Level Rise
year,TOPEX/Poseidon,Jason-1,Jason-2,Jason-3
1992.9614,-16.27000,
1992.9865,-17.97000,
1993.0123,-14.87000,
1993.0407,-19.87000,
1993.0660,-25.27000,
1993.0974,-29.37000,
1993.1206,-27.67000,
1993.1493,-21.87000,
1993.1765,-18.97000,
1993.2037,-19.47000,
1993.2307,-22.97000,
1993.2851,-26.27000,
1993.3123,-20.07000,
1993.3394,-19.87000,
1998.8234,6.53000,
1998.8505,2.53000,
1998.8775,-4.07000,
1998.9046,-10.17000,
1998.9319,-3.97000,
1998.9591,-3.27000,
1998.9862,0.13000,
1999.0133,-4.17000,
1999.0405,-6.87000,
1999.0948,-11.17000,
1999.1256,3.73000,
1999.1491,-1.27000,
1999.1763,-6.37000,
1999.2034,-11.77000,
1999.2306,-10.37000,
1999.2577,-7.87000,
1999.2848,-5.37000,
1999.3392,-8.27000,
1999.3663,-13.77000,
2001.6738,5.43000,
2001.7010,15.73000,
2001.7283,16.73000,
2001.7553,14.93000,
2001.7825,7.73000,
2001.8096,4.03000,
2001.8368,11.63000,
2001.8639,16.53000,
2001.8918,14.53000,
2001.9182,10.93000,
2001.9454,4.73000,
2001.9725,3.63000,
2002.1083,-1.67000,6.23000,
2002.1352,6.33000,
2002.1354,-0.17000,
2002.1626,4.43000,4.93000,
2002.1897,4.93000,
2002.1898,-1.27000,
...
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON

Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning

Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education