Please see my 2 previous asked questions if data is needed from there to answer this question. Run a regression of salary versus gender, age, prior experience, Beta experience, and any two of the education dummies, and interpret the results. Please include all inputs/ steps for excel Employee Gender Age Prior Experience Beta Experience Education Annual Salary 1 1 39 5 12 4 57700 2 0 44 12 8 6 76400 3 0 24 0 2 4 44000 4 1 25 2 1 4 41600 5 0 56 5 25 8 163900 6 1 41 9 10 4 72700 7 1 33 6 2 6 60300 8 0 37 11 6 4 63500 9 1 51 12 16 6 131200 10 0 23 0 1 4 39200 11 0 31 5 4 6 62900 12 1 27 0 8 0 26200 13 0 47 11 9 4 74500 14 1 35 5 5 6 64800 15 1 29 5 4 0 21600 16 0 46 4 15 6 81900 17 1 50 10 17 4 115400 18 0 30 3 6 4 57800 19 1 34 10 1 4 55800 20 1 42 11 8 4 76100 21 1 51 10 15 8 135700 22 0 63 16 20 4 140400 23 0 28 0 5 4 55400 24 1 32 4 1 4 49700 25 0 55 11 16 6 134800 26 1 45 20 2 4 76900 27 0 34 2 12 2 28700 28 0 33 2 7 4 58800 29 1 23 0 1 4 43100 30 0 40 4 13 6 82400 31 1 48 6 15 4 80100 32 1 27 0 6 0 27000 33 1 36 5 5 6 58800 34 0 58 9 22 4 133100 35 0 31 1 1 6 53700 36 1 21 0 1 2 26700 37 0 47 5 16 4 81300 38 1 35 3 7 4 55400 39 1 52 12 14 8 139900 40 0 29 3 3 2 33200 41 1 42 11 7 4 75000 42 0 60 10 21 4 128200 43 1 50 8 13 4 76800 44 1 33 1 2 6 54200 45 0 26 0 5 2 32600 46 0 38 6 6 6 59200 47 1 44 7 12 4 74800 48 0 25 0 3 4 45500 49 1 37 8 5 4 46500 50 0 53 13 13 6 136300 51 0 46 7 18 4 86900 52 1 20 0 1 0 23900 53 1 34 5 1 6 52700 54 1 60 12 13 4 92700 55 1 36 6 7 4 59500 56 0 41 6 3 6 69400 57 1 33 3 1 6 46600 58 0 29 3 8 4 61700 59 0 48 11 9 4 88200 60 1 43 0 4 6 45000 61 1 61 10 5 0 52200 62 0 30 5 1 6 61400 63 1 36 5 19 4 87500 64 1 48 7 23 4 103700 65 1 29 5 6 4 54000 66 0 26 11 23 4 125100 67 1 49 5 11 2 45900 68 0 28 10 2 6 79300 69 1 44 20 5 6 108600 70 1 48 0 13 6 68200 71 0 50 0 21 2 65200 72 1 48 12 14 4 95600 73 1 30 16 12 4 103100 74 1 41 20 23 4 143500 75 0 35 11 5 4 78200 76 1 28 3 3 4 40200 77 1 33 8 5 4 60500 78 1 61 0 7 4 40500 79 1 53 10 8 4 73800 80 1 48 4 4 4 45300 81 0 47 9 1 4 61400 82 1 48 4 7 6 64800 83 1 55 11 3 6 75600 84 0 32 1 19 6 95800 85 0 60 11 4 8 126700 86 0 50 10 2 4 67000 87 1 49 16 12 4 102600 88 0 22 4 3 4 52000 89 1 51 9 10 4 76000 90 1 22 0 3 8 83000 91 1 47 8 13 4 80800 92 1 41 10 10 6 91100 93 0 24 3 1 0 30100 94 1 64 5 7 4 55700 95 1 43 0 11 4 51400 96 0 22 3 1 4 43800 97 1 59 0 1 4 25000 98 0 32 10 15 2 80600 99 1 45 8 5 2 39600 100 0 47 0 1 2 13400 101 1 29 6 18 4 88200 102 0 61 9 15 6 109100 103 1 57 3 1 4 34200 104 1 65 4 9 4 57800 105 0 34 6 7 4 68100 106 0 54 6 13 6 94900 107 1 30 5 5 6 63200 108 1 39 6 16 4 82700 109 0 32 7 8 6 85600 110 1 24 2 7 2 27100 111 0 40 10 3 4 69800 112 0 52 13 4 4 81300 113 0 28 11 5 4 78400 114 0 53 20 9 6 127300 115 0 43 0 24 4 93700 116 0 30 5 6 6 74400 117 0 46 3 3 4 48300 118 1 38 10 13 6 98900 119 0 28 0 16 4 73300 120 1 46 11 19 6 117300 121 1 30 5 5 0 37800 122 1 43 6 14 4 77400 123 1 29 11 1 8 111200 124 0 48 11 4 4 75300 125 0 42 7 17 4 96900 126 0 18 10 19 6 123600 127 0 35 6 2 4 55200 128 1 22 0 1 0 12400 129 1 44 4 15 4 73900 130 1 47 20 4 4 94100 131 1 34 10 8 4 74300 132 1 37 11 4 4 66900 133 1 49 0 4 2 12500 134 0 32 0 18 6 90200 135 1 37 5 8 4 59000 136 1 29 10 19 6 114700 137 0 24 7 15 2 71700 138 0 43 20 18 0 125500 139 1 54 11 17 4 100200 140 1 26 0 4 6 45400 141 0 47 10 4 4 72200 142 1 31 5 12 4 69500 143 0 33 11 1 4 67900 144 0 42 2 7 6 67500 145 1 34 2 1 4 31800 146 1 59 0 10 2 27800 147 1 43 5 4 6 60200 148 1 30 2 2 4 34500 149 1 45 7 12 6 87000 150 1 50 0 4 2 12500 151 0 23 0 15 8 122700 152 1 44 5 7 4 56200 153 0 48 10 6 2 56900 154 1 47 4 12 4 66000 155 0 20 11 4 4 76000 156 1 31 0 16 2 44100 157 0 30 0 18 4 78500 158 1 42 5 13 4 71800 159 1 25 9 7 6 80700 160 1 24 2 15 2 47800 161 0 36 13 13 4 105000 162 0 32 6 15 6 100700 163 1 27 2 1 0 18300 164 0 55 12 12 6 110600 165 0 36 0 2 4 36800 166 1 22 0 4 6 45500 167 1 25 0 14 6 71400 168 1 47 5 14 4 74300 169 0 43 16 11 8 160600 170 1 53 0 7 6 52500 171 0 38 5 7 4 65000 172 0 39 12 14 4 104500 173 1 35 5 18 4 85000 174 1 23 3 10 8 110200 175 0 43 10 7 4 80100 176 1 33 3 3 4 40000 177 1 44 10 1 4 55900 178 1 33 0 16 4 64600 179 1 31 0 13 6 68600 180 1 36 7 8 4 65100 181 1 45 13 19 4 111700 182 1 45 12 1 4 62000 183 0 39 2 7 4 55800 184 0 45 5 11 2 54600 185 0 25 1 1 4 37600 186 1 34 0 7 4 41200 187 1 53 0 6 6 49900 188 0 35 4 6 4 59400 189 1 52 3 13 4 65500 190 1 33 10 3 6 73200 191 1 49 0 3 4 30500 192 1 59 6 17 4 84800 193 1 35 16 9 4 95200 194 1 44 11 11 4 84900 195 1 61 11 18 4 102600 196 1 43 11 1 4 59000 197 0 30 0 5 4 44800 198 0 32 11 2 4 70500 199 0 57 10 4 6 83700 200 1 44 10 18 4 100000 201 1 44 2 4 4 39300 202 1 45 0 7 2 20400 203 0 43 0 12 6 74300 204 0 33 11 19 4 114500

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Please see my 2 previous asked questions if data is needed from there to answer this question.

Run a regression of salary versus gender, age, prior experience, Beta experience, and any two of the education dummies, and interpret the results.

Please include all inputs/ steps for excel

Employee Gender Age Prior Experience Beta Experience Education Annual Salary
1 1 39 5 12 4 57700
2 0 44 12 8 6 76400
3 0 24 0 2 4 44000
4 1 25 2 1 4 41600
5 0 56 5 25 8 163900
6 1 41 9 10 4 72700
7 1 33 6 2 6 60300
8 0 37 11 6 4 63500
9 1 51 12 16 6 131200
10 0 23 0 1 4 39200
11 0 31 5 4 6 62900
12 1 27 0 8 0 26200
13 0 47 11 9 4 74500
14 1 35 5 5 6 64800
15 1 29 5 4 0 21600
16 0 46 4 15 6 81900
17 1 50 10 17 4 115400
18 0 30 3 6 4 57800
19 1 34 10 1 4 55800
20 1 42 11 8 4 76100
21 1 51 10 15 8 135700
22 0 63 16 20 4 140400
23 0 28 0 5 4 55400
24 1 32 4 1 4 49700
25 0 55 11 16 6 134800
26 1 45 20 2 4 76900
27 0 34 2 12 2 28700
28 0 33 2 7 4 58800
29 1 23 0 1 4 43100
30 0 40 4 13 6 82400
31 1 48 6 15 4 80100
32 1 27 0 6 0 27000
33 1 36 5 5 6 58800
34 0 58 9 22 4 133100
35 0 31 1 1 6 53700
36 1 21 0 1 2 26700
37 0 47 5 16 4 81300
38 1 35 3 7 4 55400
39 1 52 12 14 8 139900
40 0 29 3 3 2 33200
41 1 42 11 7 4 75000
42 0 60 10 21 4 128200
43 1 50 8 13 4 76800
44 1 33 1 2 6 54200
45 0 26 0 5 2 32600
46 0 38 6 6 6 59200
47 1 44 7 12 4 74800
48 0 25 0 3 4 45500
49 1 37 8 5 4 46500
50 0 53 13 13 6 136300
51 0 46 7 18 4 86900
52 1 20 0 1 0 23900
53 1 34 5 1 6 52700
54 1 60 12 13 4 92700
55 1 36 6 7 4 59500
56 0 41 6 3 6 69400
57 1 33 3 1 6 46600
58 0 29 3 8 4 61700
59 0 48 11 9 4 88200
60 1 43 0 4 6 45000
61 1 61 10 5 0 52200
62 0 30 5 1 6 61400
63 1 36 5 19 4 87500
64 1 48 7 23 4 103700
65 1 29 5 6 4 54000
66 0 26 11 23 4 125100
67 1 49 5 11 2 45900
68 0 28 10 2 6 79300
69 1 44 20 5 6 108600
70 1 48 0 13 6 68200
71 0 50 0 21 2 65200
72 1 48 12 14 4 95600
73 1 30 16 12 4 103100
74 1 41 20 23 4 143500
75 0 35 11 5 4 78200
76 1 28 3 3 4 40200
77 1 33 8 5 4 60500
78 1 61 0 7 4 40500
79 1 53 10 8 4 73800
80 1 48 4 4 4 45300
81 0 47 9 1 4 61400
82 1 48 4 7 6 64800
83 1 55 11 3 6 75600
84 0 32 1 19 6 95800
85 0 60 11 4 8 126700
86 0 50 10 2 4 67000
87 1 49 16 12 4 102600
88 0 22 4 3 4 52000
89 1 51 9 10 4 76000
90 1 22 0 3 8 83000
91 1 47 8 13 4 80800
92 1 41 10 10 6 91100
93 0 24 3 1 0 30100
94 1 64 5 7 4 55700
95 1 43 0 11 4 51400
96 0 22 3 1 4 43800
97 1 59 0 1 4 25000
98 0 32 10 15 2 80600
99 1 45 8 5 2 39600
100 0 47 0 1 2 13400
101 1 29 6 18 4 88200
102 0 61 9 15 6 109100
103 1 57 3 1 4 34200
104 1 65 4 9 4 57800
105 0 34 6 7 4 68100
106 0 54 6 13 6 94900
107 1 30 5 5 6 63200
108 1 39 6 16 4 82700
109 0 32 7 8 6 85600
110 1 24 2 7 2 27100
111 0 40 10 3 4 69800
112 0 52 13 4 4 81300
113 0 28 11 5 4 78400
114 0 53 20 9 6 127300
115 0 43 0 24 4 93700
116 0 30 5 6 6 74400
117 0 46 3 3 4 48300
118 1 38 10 13 6 98900
119 0 28 0 16 4 73300
120 1 46 11 19 6 117300
121 1 30 5 5 0 37800
122 1 43 6 14 4 77400
123 1 29 11 1 8 111200
124 0 48 11 4 4 75300
125 0 42 7 17 4 96900
126 0 18 10 19 6 123600
127 0 35 6 2 4 55200
128 1 22 0 1 0 12400
129 1 44 4 15 4 73900
130 1 47 20 4 4 94100
131 1 34 10 8 4 74300
132 1 37 11 4 4 66900
133 1 49 0 4 2 12500
134 0 32 0 18 6 90200
135 1 37 5 8 4 59000
136 1 29 10 19 6 114700
137 0 24 7 15 2 71700
138 0 43 20 18 0 125500
139 1 54 11 17 4 100200
140 1 26 0 4 6 45400
141 0 47 10 4 4 72200
142 1 31 5 12 4 69500
143 0 33 11 1 4 67900
144 0 42 2 7 6 67500
145 1 34 2 1 4 31800
146 1 59 0 10 2 27800
147 1 43 5 4 6 60200
148 1 30 2 2 4 34500
149 1 45 7 12 6 87000
150 1 50 0 4 2 12500
151 0 23 0 15 8 122700
152 1 44 5 7 4 56200
153 0 48 10 6 2 56900
154 1 47 4 12 4 66000
155 0 20 11 4 4 76000
156 1 31 0 16 2 44100
157 0 30 0 18 4 78500
158 1 42 5 13 4 71800
159 1 25 9 7 6 80700
160 1 24 2 15 2 47800
161 0 36 13 13 4 105000
162 0 32 6 15 6 100700
163 1 27 2 1 0 18300
164 0 55 12 12 6 110600
165 0 36 0 2 4 36800
166 1 22 0 4 6 45500
167 1 25 0 14 6 71400
168 1 47 5 14 4 74300
169 0 43 16 11 8 160600
170 1 53 0 7 6 52500
171 0 38 5 7 4 65000
172 0 39 12 14 4 104500
173 1 35 5 18 4 85000
174 1 23 3 10 8 110200
175 0 43 10 7 4 80100
176 1 33 3 3 4 40000
177 1 44 10 1 4 55900
178 1 33 0 16 4 64600
179 1 31 0 13 6 68600
180 1 36 7 8 4 65100
181 1 45 13 19 4 111700
182 1 45 12 1 4 62000
183 0 39 2 7 4 55800
184 0 45 5 11 2 54600
185 0 25 1 1 4 37600
186 1 34 0 7 4 41200
187 1 53 0 6 6 49900
188 0 35 4 6 4 59400
189 1 52 3 13 4 65500
190 1 33 10 3 6 73200
191 1 49 0 3 4 30500
192 1 59 6 17 4 84800
193 1 35 16 9 4 95200
194 1 44 11 11 4 84900
195 1 61 11 18 4 102600
196 1 43 11 1 4 59000
197 0 30 0 5 4 44800
198 0 32 11 2 4 70500
199 0 57 10 4 6 83700
200 1 44 10 18 4 100000
201 1 44 2 4 4 39300
202 1 45 0 7 2 20400
203 0 43 0 12 6 74300
204 0 33 11 19 4 114500
Expert Solution
Step 1

Use the given data to perform regression analysis using excel.

SUMMARY OUTPUT            
Regression Statistics          
Multiple R 0.963350388          
R Square 0.92804397          
Adjusted R Square 0.926226899          
Standard Error 8216.953361          
Observations 204          
             
ANOVA            
  df SS MS F Significance F  
Regression 5 172420219587.90 34484043918 510.7360879 0.000  
Residual 198 13368627863 67518322.54      
Total 203 185788847450.98        
             
  Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 5429.210042 2598.1238 2.089665643 0.037925202 305.664498 10552.75559
Gender -7061.072496 1181.879286 -5.974444748 0.0000000106 -9391.759105 -4730.385886
Age -101.8252792 57.71421278 -1.764301622 0.079223184 -215.6387155 11.9881571
Prior Experience 3074.188348 123.7685251 24.83820782 0.0000 2830.114653 3318.262043
Beta Experience 2600.999738 97.52797528 26.66926828 0.0000 2408.672866 2793.326609
Education 7413.197496 350.9650588 21.12232346 0.0000 6721.088266 8105.306726
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman