pipe 6-77 Water is flowing into and discharging from U-section as shown in Fig. P6-77. At flange (1), the total absolute pressure is 200 kPa, and 55 kg/s flows into the pipe. At flange (2), the total pressure is 150 kPa. At loca- tion (3), 15 kg/s of water discharges to the atmosphere, which is at 100 kPa. Determine the total x- and z-forces at the two flanges connecting the pipe. Discuss the significance of grav- ity force for this problem. Take the momentum-flux correc- tion factor to be 1.03 throughout the pipes. m as 15 kg/s (3 3 cm 40 kg/s 10 cm ZA 55 kg/s cm FIGURE P6-77
pipe 6-77 Water is flowing into and discharging from U-section as shown in Fig. P6-77. At flange (1), the total absolute pressure is 200 kPa, and 55 kg/s flows into the pipe. At flange (2), the total pressure is 150 kPa. At loca- tion (3), 15 kg/s of water discharges to the atmosphere, which is at 100 kPa. Determine the total x- and z-forces at the two flanges connecting the pipe. Discuss the significance of grav- ity force for this problem. Take the momentum-flux correc- tion factor to be 1.03 throughout the pipes. m as 15 kg/s (3 3 cm 40 kg/s 10 cm ZA 55 kg/s cm FIGURE P6-77
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
100%

Transcribed Image Text:pipe
6-77 Water is flowing into and discharging from
U-section as shown in Fig. P6-77. At flange (1), the total
absolute pressure is 200 kPa, and 55 kg/s flows into the
pipe. At flange (2), the total pressure is 150 kPa. At loca-
tion (3), 15 kg/s of water discharges to the atmosphere, which
is at 100 kPa. Determine the total x- and z-forces at the two
flanges connecting the pipe. Discuss the significance of grav-
ity force for this problem. Take the momentum-flux correc-
tion factor to be 1.03 throughout the pipes.
m as
15 kg/s
(3
3 cm
40 kg/s
10 cm
ZA
55 kg/s cm
FIGURE P6-77
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 5 images

Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON