Particle A of mass mA=m/2 moving along the x-axis with velocity v0 collides elastically with another particle B at rest having mass mB=m/3. If both particles move along the x-axis after the collision, the change ∆ λ in de-Broglie wavelength of particle A, in terms of its de-Broglie wavelength (λ0) before collision is: 1) ∆λ = (5/2)λ0 2) ∆λ = 2λ0 3) ∆λ = 4λ0 4) ∆λ = (3/2)λ0
Particle A of mass mA=m/2 moving along the x-axis with velocity v0 collides elastically with another particle B at rest having mass mB=m/3. If both particles move along the x-axis after the collision, the change ∆ λ in de-Broglie wavelength of particle A, in terms of its de-Broglie wavelength (λ0) before collision is: 1) ∆λ = (5/2)λ0 2) ∆λ = 2λ0 3) ∆λ = 4λ0 4) ∆λ = (3/2)λ0
Related questions
Question
100%
Particle A of mass mA=m/2 moving along the x-axis with velocity v0 collides elastically with another particle B at rest having mass mB=m/3. If both particles move along the x-axis after the collision, the change ∆ λ in de-Broglie wavelength of particle A, in terms of its de-Broglie wavelength (λ0) before collision is:
1) ∆λ = (5/2)λ0
2) ∆λ = 2λ0
3) ∆λ = 4λ0
4) ∆λ = (3/2)λ0
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images