Problem 4: A photon originally traveling along the x axis, with wavelength λ = 0.100 nm is incident on an electron (m = 9.109 x 10-31 kg) that is initially at rest. The x-component of the momentum of the electron after the collision is 5.0 x 10-24 kg m/s and the y-component of the momentum of the electron after the collision is -6.0 x 10-24 kg m/s. If the photon scatters at an angle from its original direction, what is wavelength of the photon after the collision. h= 6.626 x 10-34 J-s and c = 3.0 x 108 m/s.

icon
Related questions
Question
Problem 4:
A photon originally traveling along the x axis, with wavelength λ = 0.100 nm is incident on an electron (m = 9.109 x 10-31 kg) that is
initially at rest. The x-component of the momentum of the electron after the collision is 5.0 x 10-24 kg m/s and the y-component of
the momentum of the electron after the collision is -6.0 x 10-24 kg m/s. If the photon scatters at an angle + from its original
direction, what is wavelength of the photon after the collision. h= 6.626 x 10:34 J·s and c = 3.0 x 108 m/s.
Transcribed Image Text:Problem 4: A photon originally traveling along the x axis, with wavelength λ = 0.100 nm is incident on an electron (m = 9.109 x 10-31 kg) that is initially at rest. The x-component of the momentum of the electron after the collision is 5.0 x 10-24 kg m/s and the y-component of the momentum of the electron after the collision is -6.0 x 10-24 kg m/s. If the photon scatters at an angle + from its original direction, what is wavelength of the photon after the collision. h= 6.626 x 10:34 J·s and c = 3.0 x 108 m/s.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS